Twenty-five years of transiting planets

Josh Winn PRINCETON UNIVERSITY

A wealth of information from transits

Planet properties

Radius

Mass

Atmospheric spectrum Oblateness, obliquity Moons, rings

Orbital properties

Period

Eccentricity

Resonances

Secular effects

Host star properties

Rotational obliquity
Starspot sizes, latitudes
Limb darkening
Gravity darkening
Companion stars

Population properties

Overall occurrence

Period/radius distribution

Multiplicity distribution

Mutual inclinations

The key transit observables

Depth

$$\delta \approx \left(\frac{r}{R}\right)^2 \begin{cases} 10^{-2}, \text{ Jupiter} \\ 10^{-4}, \text{ Earth} \end{cases}$$

Duration

$$T \lesssim P \frac{R}{\pi a}$$
 \begin{cases} 2 \text{hr, hot Jupiter} \\ 13 \text{hr, Earth} \end{cases}

Winn (2010)

transit probability
$$=\frac{2\pi \times \frac{2R}{a}}{4\pi} = \frac{R}{a} = \frac{1}{215} \left(\frac{R}{R_{\odot}}\right) \left(\frac{a}{1 \text{ AU}}\right)^{-1}$$

Demographics with transit surveys

- Inefficient because of low transit probability
- Strongly biased in favor of large and short-period planets, making corrections sensitive to details
- Degeneracy between multiplicity and mutual inclination dispersion

Multiplicity and mutual inclinations

Suppose we detect only one transiting planet.

If mutual inclinations are low, the non-detection of other transits suggests other planets do not exist.

If mutual inclinations are high, the non-detection of other transits has little bearing on the existence of other planets.

Geometric transit probabilities for multiple planets

Complicated, because the orientations of orbital planes are correlated

 $p(tra_1 \& tra_2) = p(tra_1) \cdot p(tra_2 | tra_1)$

R

 a_1

depends on mutual inclination

Geometric transit probabilities for multiple planets

Solar System Transit Probabilities

Planets	Probability
Mercury-Venus	6.84×10^{-4}
Earth-Venus	3.22×10^{-4}
Earth-Mars	2.84×10^{-4}
Mercury-Earth-Mars	2.10×10^{-4}
Mercury-Venus-Saturn	3.53×10^{-5}
Mercury-Earth-Uranus	6.15×10^{-8}
Venus-Earth-Uranus	2.17×10^{-5}
Mercury-Mars-Uranus	4.95×10^{-6}
Jupiter-Saturn-Uranus	2.22×10^{-6}
Mercury-Venus-Neptune	1.77×10^{-6}
Mars-Jupiter-Neptune	2.56×10^{-6}

Demographics with transit surveys

- Inefficient because of low transit probability
- Strongly biased in favor of large and short-period planets, making corrections sensitive to details
- Degeneracy between multiplicity and mutual inclination dispersion

- We are lucky that short period planets turned out to be abundant
- Hundreds of thousands of stars can be searched simultaneously
- Surveys with space telescopes provide precise and homogeneous datasets
- Degeneracy can be broken with Doppler and TTV measurements

A brief history of transit surveys

Space Telescopes are Better

\$230 million NASA Explorer Mission

Principal Investigator: George Ricker (MIT)

Director of Science: David Latham (CfA)

Proposed 2011, launched 2018

D=10.5 cm, f/1.4 24° field of view 600 – 1050 nm

Major partners:

MIT (MKI and Lincoln Labs), CfA, NASA GSFC, NASA Ames, STScI, Northrup Grumman

TESS's P/2 High Earth Orbit

TESS's P/2 High Earth Orbit

April 2013 TESS is selected by NASA

May 2013 Kepler mission ends after a reaction wheel failure

(a) P/2-HEO in Earth-Moon rotating frame.

The K2 mission

2015 - 2018

Transiting Planets and Planet Candidates Smaller than Neptune in 2024

Transiting Planets and Planet Candidates in 2024

A brief review of demographics from transit surveys

Occurrence of giant planets

An example of a non-parametric occurrence function

The Grand Unified Hot Jupiter Survey

Occurrence of dwarf planets

An example of a parametric occurrence function

$$\frac{dN_{\rm p}}{dN_{\star} d\log P} = CP^{\beta} \left[1 - e^{-\left(\frac{P}{P_0}\right)^{\gamma}} \right]$$

Occurrence of dwarf planets

Occurrence vs. radius and period

Occurrence vs. stellar metallicity

Occurrence vs. stellar metallicity

Boley et al. (2024)

Intra-system regularity

Peas in a Pod

Intra-system regularity

Compact multiple-planet systems

Compact multiple-planet systems

Compact multiple-planet systems

Near-resonances are more common around young stars than old stars

Seems to imply that planetary systems form in resonant chains, which break over ~108 yr

Other occurrence results

- Occurrence versus age (Yang et al. 2023, Vach et al. 2024, Sayeed et al. 2025, Zink et al. 2023)
- Occurrence versus stellar mass (Dressing et al. 2015, Mulders, Pascucci, & Apai 2015, Hardegree-Ullman et al. 2019, Kunimoto & Matthews 2020, He, Ford, & Ragozzine 2021, Giacalone & Dressing 2025, Kristo & Charbonneau 2023)
- Conditional occurrence of outer giants and compact multi-planet systems (Zhu & Wu 2018, Bryan et al. 2019, Mulders et al. 2021, Bonomo et al. 2023, Lefevre-Forjan & Mulders 2025, Van Zandt et al. 2025, Weiss+...
- Potentially rocky planets in the habitable zone (Hsu et al. 2020, Bryson et al. 2021, Bergsten et al. 2022)
- Review articles: Zhu & Wu (2021), Winn & Petigura (2024)

Future transit surveys

ESA mission – medium-class Cosmic Vision Principal Investigator: Heike Rauer Selected in 2014, to be launched in late 2026 26 x 12 cm optical telescopes

Partially overlapping fields of view

Combined field is 2,132 square degrees (5% of the sky)

Earth Two

Chinese Academy of Sciences Principal Investigator: Jian Ge Anticipated launch in late 2028

Microlensing FoV

and one 33 cm telescope for microlensing.