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Are we alone?

Searching 

for Life

Characterizing Exoplanet 
Atmospheres

Discovering Exoplanets

New telescope and instrument 
capabilities define entire eras of 

science

We are here!



What can we learn about rocky exoplanet 
environments in the coming decades?
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What can we learn about rocky exoplanet environments in the 
coming decades?

Astro2020; Exoplanet Science Strategy (2018)
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Facilities: JWST, 30m Ground-based
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“The M-dwarf opportunity”



What can we learn about rocky exoplanet environments in the 
coming decades?

M dwarfs F,G,K,M dwarfs

Facilities: JWST, 30m Ground-based Facilities: NASA’s Habitable Worlds 
Observatory, LIFE Mission Concept

Transiting Exoplanet Science Exoplanet Direct Imaging
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Astro2020; Exoplanet Science Strategy (2018)

“The M-dwarf opportunity”
“Earth-like planets around 

Sun-like stars”



Rocky Exoplanet Characterization 
Big Picture Questions:
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1. Does the planet have an 
atmosphere?

Rocky Exoplanet Characterization 
Big Picture Questions:
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life

1. Does the planet have an 
atmosphere?

2. What is the nature of the 
atmosphere?

3. Is the planet habitable?

4. Does the planet have signs 
of life?

Rocky Exoplanet Characterization 
Big Picture Questions:
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1. How common are atmospheres on 
rocky exoplanets around different 
stellar types? 

2. What physical and chemical 
processes shape the atmospheres 
of rocky exoplanets? 

3. How prevalent are habitable 
conditions on rocky exoplanets? 

4. Are we alone [and life in the 
universe is exceedingly rare]? Or is 
life in the universe common? 

Rocky Exoplanet Characterization 
Big Picture Population Questions:
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Atmospheric 
Demographics



Future Work on Potentially Habitable and 
Inhabited Rocky Planets

Case 1 – The Cosmic Shoreline: How common are atmospheres on 
rocky exoplanets around different stellar types? 

Case 2 – The Habitable Zone: How prevalent are habitable conditions 
on rocky exoplanets? 

Case 3 – The Search for Life: Does life readily arise in habitable 
conditions or are we alone? 
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Case 1 – The Cosmic Shoreline: 
How common are atmospheres on rocky 
exoplanets around different stellar types? 
A near-term population-level exoplanet characterization science case
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In the solar system, 
I ∝ vesc

4

may implicate thermal 
escape.

Increasing tendency for atmosphere to be retained
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Atmospheres

However, total cumulative 
XUV-driven escape 

IXUV ∝ vesc
4

Or energy-limited escape 
IXUV ∝ vesc

3 √ρ

may instead shape the cosmic 
shoreline. 

Does this hold in the exoplanet 
population? And if not, why? 

The Cosmic Shoreline divides solar system bodies 
with and without atmospheres
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Zahnle & Catling (2017)



Detecting Rocky Planet Atmospheres

Transit

EclipsePhase Curve
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Secondary eclipse and thermal phase 
curves are most sensitive to the strong 
emission signal expected from hot 
airless planets. However, many thin 
atmospheres (< 1 bar) can appear 
consistent with an airless planet. 

Transit Transmission spectra are most 
sensitive to relatively extended and 
cloud-free atmospheres. However, 
compact and cloudy atmospheres can 
appear consistent with airless planets. 

Thin atmospheres are a challenge and 
still slip under the detection sensitivity 
of both techniques. 



Rocky Worlds 500-hr DDT Program

• Science Goals
• Determine if rocky planets have 

atmospheres
• Define the cosmic shoreline

• Observing Approach
• Survey of rocky M-dwarf exoplanets
• Secondary eclipses
• 15 – 20 planets
• 15 µm MIRI photometry

• Targets Under Consideration (TUC)
• First Four planets identified in orange
• More planets to come later in 2025 https://rockyworlds.stsci.edu/rw-website-targets.html 
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https://rockyworlds.stsci.edu/rw-website-targets.html 



Charting the Cosmic Shoreline
JWST GO Program 7073 (PIs Lustig-Yaeger & Stevenson) 

• Science questions: 
1. Planet-Level: Do temperate M-dwarf rocky planets possess secondary atmospheres? 
2. System-Level: Where is the cosmic shoreline located within a given multi-planet system? 
3. Population-Level: How does the presence of atmospheres correlate with stellar type? 

• Observing Strategy: Transmission spectroscopy from 1-5 µm
• NIRSpec/G395H + NIRISS SOSS or NIRSpec PRISM

• Targets: 6 sibling planets in 3 different systems (245 hrs), including planets most 
likely to have atmospheres
• RP = 1.1 – 1.7 RE
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Charting the Cosmic Shoreline
JWST GO Program 7073 (PIs Lustig-Yaeger & Stevenson) 
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Finding atmospheres would be great, but not 
finding them would be profound 
If we find that M dwarf 
rocky planets don’t have 
atmospheres into (and 
beyond) the HZ, then we 
can effectively cross 75% 
of stars in the universe 
off our list of targets that 
could have habitable 
surfaces and host life (as 
we know it).  
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Case 2 – The Habitable Zone: 
How prevalent are habitable 
conditions on rocky exoplanets? 

A long-term population-level exoplanet characterization science case
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Planetary Habitability |
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• Planets within the HZ are 
not guaranteed to 
actually be habitable (i.e., 
have liquid water on 
surface) 

• Complicated interactions 
between the star, planet, 
and entire planetary 
system may work in 
concert to promote, 
destroy, or sustain 
habitable planetary 
conditions

Meadows & Barnes (2018)

Many factors affect habitability, not 
just the distance from the star



Constraining Exoplanet Habitability

1. Direct evidence of surface liquid 
water 

2. Indirect evidence of surface liquid 
water 
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Constraining Exoplanet Habitability

1. Direct evidence of surface liquid 
water 
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measurements at multiple phases 
(including crescent).  
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water 
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I’ll be speaking about this next week at the 
HWO25 meeting in DC 
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Constraining Exoplanet Habitability

1. Direct evidence of surface liquid 
water 
• Ocean glint from reflected light 

measurements at multiple phases 
(including crescent).  

2. Indirect evidence of surface liquid 
water 
• Surface conditions (temperature, 

pressure, atmospheric water vapor) 
that are consistent with liquid water. 

• Trends among a population of HZ 
planets that exhibit climate stability 
due to the presence of oceans. 
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I’ll be speaking about this next week at the 
HWO25 meeting in DC 



A Statistical Test of the Habitable Zone
Leveraging the Exoplanet Ensemble to Empirically test the silicate-weathering feedback
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Bean et al. (2017)



• The concept of the HZ rests on 
the assumption of a functioning 
silicate-weathering feedback 

• Planets that receives less stellar 
radiation, should have more 
atmospheric CO2 to maintain 
surface temperatures that allow 
liquid water

• This hypothesis can be tested by 
analyzing the atmospheres of 
many exoplanets
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A Statistical Test of the Habitable Zone
Leveraging the Exoplanet Ensemble to Empirically test the silicate-weathering feedback

Future missions that can measure CO2 in exoplanet atmospheres could perform this empirical test of the 
Habitable Zone!

Bean et al. (2017)
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Detecting Atmospheric CO2 Trends as Population-Level 
Signatures for Long-Term Stable Water Oceans
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Hansen et al. (2025)

• We developed a Hierarchical Bayesian Atmospheric 
Retrieval (HBAR) numerical approach to investigate 
population-level trends in exoplanet atmospheres 
(Lustig-Yaeger et al. 2022).

• Impractical with JWST in terms of S/N and number of 
targets. 



Detecting Atmospheric CO2 Trends as Population-Level 
Signatures for Long-Term Stable Water Oceans

• Simulated LIFE survey results demonstrate the robust detection of population-level CO2 trends

• But biased CO2 partial pressure constraints hinder accurate differentiation between biotic and abiotic trends, 
underscoring the importance of testing atmospheric characterization performance against the broad 
diversity expected for planetary populations
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Hansen et al. (2025)



Case 3 – The Search for Life: 
Does life readily arise in habitable 
conditions or are we alone? 
The ultimate long-term population-level exoplanet characterization goal
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Biosignatures  |  
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Guiding questions 

(Kiang et al., 2018; Schwieterman et al., 2018; Meadows et al., 2018; Catling et al., 2018; Walker et al., 2018; 

Fujii et al., 2018)



Biosignatures  |  
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What makes for a good biosignature?

Meadows (2017); Meadows et al. (2018)

1. Reliability
• Does it have biological origin? Is it more likely to be 

produced by life than planetary processes e.g. 
geology, chemistry, etc.  

2. Survivability 
• Does it avoid destruction in a planetary 

environment such that it can accumulate? e.g. 
destruction by reactions with volcanic gases, water, 
etc.

3. Detectability
• Does it build up to detectable levels? Is it distinct 

from other gases?



Biosignatures on the 

Earth Through Time

• Earth’s atmospheric composition 
has changed with time over 
billions of years

7/25/25 Jacob Lustig-Yaeger     |     JHU/APL 48

LUVOIR Final Report (2019)
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Biosignatures on the 

Earth Through Time

• Earth’s atmospheric composition 
has changed with time over 
billions of years

• On the Modern Earth, oxygen, 
ozone, and methane are 
biosignatures 

• On the Early Earth, methane and 
carbon dioxide together may be 
considered a biosignature
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LUVOIR Final Report (2019)



Designing HWO to Perform a Robust Search 
for Life

• The number of candidate exoplanets (Nec) required to 
constrain the fraction of planets with a given 
characteristic x (fx) at a given confidence level (c) can be 
written as: 

𝑁𝑒𝑐 =
log 1 − 𝑐

log(1 − 𝑓𝑥  )

• A non-detection of life still means something. 

• If we examine 25 candidate spectra and do not see signs of life, 
then we can say that the frequency of habitable planets with 
observable signs of life is <10% of candidate planets in the 
nearby universe at 95% confidence, placing the first ever upper 
limit on the frequency of observable biospheres in the cosmos. 
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(Stark et al. 2014); See also, HWO Science Case: The Search for Life on Potentially Habitable Exoplanets

https://docs.google.com/document/d/1bQFVPS1PacCraszTA_fI5CXhk0tAQujm/edit?tab=t.0#heading=h.gjdgxs


Pathways to Habitable Worlds | Astro2020

“Life on Earth may be the result of a common process, or it may require such 
an unusual set of circumstances that we are the only living beings within our 
part of the galaxy, or even in the universe. Either answer is profound. 

If planets like Earth are rare, our own world becomes even more precious. 

If we do discover the signature of life in another planetary system, it will 
change our place in the universe in a way not seen since the days of 
Copernicus—placing Earth among a community and continuum of worlds. 

The coming decades will set humanity down a path to determine whether we 
are alone.” 
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Conclusions

• Constraining the demographics of atmospheric characteristics will 
enable an empirical classification of exoplanets, including the intrinsic 
diversity exhibited by the exoplanet ensemble and physical processes 
that drive these characteristics. 

• The cosmic shoreline in M-dwarf systems presents the first tangible 
rocky planet atmospheric demographics survey. 

• Longer term goals for next-generation telescopes will give an 
opportunity to empirically test the HZ and search for life outside the 
solar system. 

• What other population-level questions will we answer along the way? 
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