

Exoplanet Demographics across Stellar Mass and Time

ILARIA PASCUCCI

Lunar and Planetary Laboratory, The University of Arizona

Motivation — Why carry out demographic studies across stellar mass and time

Outline

Key Insights So Far – What we learned

Looking Ahead – What we could learn

Motivation — Why carry out demographic studies across stellar mass and time

Outline

Key Insights So Far – What we learned

Looking Ahead – What we could learn

The Kepler Orrery III

t[BJD] = 2455215

Credit: D. Fabrycky

Which are the key physical processes that shape this diversity?

Planet Formation

- Disk properties: i) mass in solids and gas vs time; ii) edges and structures; iii) icelines
- Core formation via planetesimals and/or pebble accretion
- Orbital migration

•

Evolution (post-formation)

- Giant planet cooling and contraction
- Atmospheric loss
- Tidal interaction with the star
- Planet-planet scattering and instabilities

•

Selected cases pointing to evolution

These few young (~5-50Myr) transiting planets occupy a radius-period space where older planets are scarce

Motivation — Why carry out demographic studies across stellar mass and time

Outline

Key Insights So Far – What we learned

Looking Ahead – What we could learn

For a review on exoplanet science with *Kepler* see Lissauer, Batalha, Borucki 2023 (PPVII)

Decrease of giants towards higher-mass stars -> shorter disk lifetimes (e.g., Ribas+2015)

Decrease of giants toward lower-mass stars -> less solids in disks to form their cores (e.g., Pascucci+2016)

Smaller planets across stellar mass

Mulders, Pascucci, Apai 2015 (Kepler)

M dwarfs have more small (< 2.5R_⊕) but less larger transiting planets (see also e.g., Hardegree-Ullman+2019, Cloutier & Menou 2020, Ment & Charbonneau 2023)

Giacalone & Dressing 2025 (TESS)

Why do M dwarfs have more small transiting planets?

Forming close-in sub-Neptunes ($< 10M_{Earth}$) requires icy pebbles from the outer disk. A giant planet would reduce the pebble influx (e.g., Lambrechts+2019).

Why do M dwarfs have more small transiting planets?

Predictions:

- ~ 0.1 - $0.2M_{\odot}$ stars have less super-Earths than $\sim 0.5M_{\odot}$
- The occurrence of outer giants is anti-correlated with that of super-Earths (e.g., Bonomo+2025 and refs therein)

Pebble accretion is also supported by the linear scaling of the typical planet mass with stellar mass (Pascucci+2018 and Wu 2019)

Mulders, Pascucci, Apai (2015)

Occurrence vs period across stellar mass

Disk inner edges shape planetary architectures by concentrating solids and affecting planets' migration

see also M.-F. Sun+2025, who use *Kepler*+LAMOST+Gaia, correct for metallicity, and find a steeper relation for the innermost planet in multis

Small Planets Come in Two Sizes

A decreasing transition radius with orbital period implies atmospheric loss, whereas an increasing one points to formation

Lopez & Rice 2018

Scenario 1: rocky planets as stripped cores of hot Neptunes

Scenario 2: primordial rocky planets formed after disk dispersal

The transition radius decreases at larger orbital periods

Post-formation atmospheric mass loss shapes the transition between transiting super-Earths and sub-Neptunes

Table 6. Slope of the radius valley on the radius–period plane from various sources.

	Source	$m = \operatorname{dlog} R_p/\operatorname{dlog} P$	Stellar type
Observations	This work	$-0.11^{+0.02}_{-0.02}$	FGK
	V18	$-0.09^{+0.02}_{-0.04}$	FGK
	Martinez et al. (2019)	$-0.11^{+0.02}_{-0.02}$	FGK
	MacDonald (2019)	$-0.319^{+0.088}_{-0.116}$	FGK
	Cloutier & Menou (2020)	$0.058^{+0.022}_{-0.022}$	M
	Van Eylen et al. (2021)	$-0.11^{+0.05}_{-0.04}$	M
	Petigura et al. (2022)	$-0.11^{+0.02}_{-0.02}$	FGKM
	Luque & Pallé (2022)	$-0.02^{+0.05}_{-0.05}$	M
	Source	$m = \operatorname{dlog} R_p/\operatorname{dlog} P$	Model
Γheory	Owen & Wu (2017)	$-0.25 \le m \le -0.16$	Photoevaporation
	Lopez & Rice (2018)	-0.09	Photoevaporation
		0.11	Gas-poor formation
	Gupta & Schlichting (2019)	-0.11	Core-powered mass-loss
	Rogers et al. (2021)	-0.16	Photoevaporation
		-0.11	Core-powered mass-loss

Planet Occurrence FGK Stars $(0.556 - 1.629 M_{\odot})$

Bergsten, Pascucci+2022

These results support the atmospheric loss scenario

<u>Implications</u>: **1.** Occurrence rates of Earth-size planets in the habitable zone are overestimated if this effect is ignored (e.g., Pascucci+2019 and Bergsten+2022) and

2. Young sub-Neptunes should be more abundant than their older counterparts (e.g., Christiansen+2023, Vach+2024, Fernandes+2025)

Young Neptunes and sub-Neptunes at short periods

Motivation — Why carry out demographic studies across stellar mass and time

Outline

Key Insights So Far – What we learned

Looking Ahead – What we could learn

Additional slides

For Sun-like and lower-mass stars, same broken power law with: $q_{br} \sim 3x10^{-5}$

i. e. the mass of the most common planet scales linearly with stellar mass (Pascucci+2018, see also Wu 2019) In pebble accretion models, the most common planet mass is set by the pebble isolation mass and scales with stellar mass

Is the occurrence of wide-orbit giant planets an extension of the close-in one?

Turnover confirmed by Fulton et al. (2021) using California Legacy Survey RV data

Formation scenarios for sub-Neptunes require migration

Migration model

Drift model

Spitzer spectroscopy of TRAPPIST-1 disk analogs

adapted from Pascucci et al. 2009

Gas inside the snowline of TRAPPIST-1 disk analogs is water poor and C-rich -> *Hints* for high C/O (>0.8)!

adapted from Pascucci et al. 2013

JWST spectroscopy of TRAPPIST-1 disk analogs confirms high C/O!

ISO-ChaI 147: ~1-2Myr old disk around a ~0.1M_{star}

Why a high C/O ratio in the inner disks of very low-mass stars?

Icy pebbles migrate faster in disks around very low-mass stars, releasing water vapor that accretes faster onto the star, while C-rich outer gas moves inward. This accelerates the rise of a high C/O ratio inside the snowline.

Mah, Bitsch, Pascucci, Henning (2023)

What are the consequences for the formation and evolution of rocky planets?

When extrapolations exclude short-period planets, the frequency of Earth-size planets in the HZ drops by a factor of ~3-5

Removing the population of close-in planets (many of which could be stripped cores) reduces the occurrence of Earth analogues!

Habitable Zone occurrence rates normalized by period and radius range

Kepler Exoplanets vs. Solar System

How common are systems like our Solar System?

Only 3% of multi-planet systems have no planets interior to Venus

