

2025 Sagan Summer Workshop

THE FUTURE OF TRANSITING EXOPLANET SEARCHES FROM SPACE IN THE NEXT DECADE

Heike Rauer German Aerospace Center (DLR) and Freie Universität Berlin (FUB), Germany

What transiting planets can provide (... depending on size, planet type, orbital distance, ...)

- radii
- Planetary densities (with RV masses)
- Oblateness (gas giant shape)
- Love numbers
- Constrain planet interiors
- Phase curves
- Atmosphere spectroscopy

- Characterize individual planets
- Population studies

Exoplanet detection status today

- >6000 planets in exoplanet.eu
- >1700 planets with m + r
- ~240 with m<10 M_earth and with r<2 R_earth

Many more "planet candidates".

Mean density

All orbital periods

Rauer et al., 2025

Mean density

Orbital Periods >80 days

Rauer et al., 2025

Transiting planets with the Roman Galactic Bulge Time Domain Survey

Source: NASA Joins Telescope, Instruments to Roman Spacecraft

NASA

Roman Galactic Bulge Time Domain Survey

- Scheduled for launch October 2026
- Telescope size 2.4 m
- Field-of-view: 0.8 deg x 0.4 deg
 (0.281 deg²)
- Designed to achieve the Roman baseline science requirements of precise planet occurrence rates, including η_{\oplus} , and enable additional astrophysics
- 5 fields + 1 Galactic center field
- 6 x 72 day observing seasons, ~12 minute cadence in broadband filter, ~67 second exposures

GBTDS Definition Committee Report (2024)

Transiting planet yields

■ Survey simulations down to 21st mag (Wilson et al. 2023, Montet et al. 2017) predict 60,000-200,000 transiting planets

- 90-95% will be giant planets
- Limited ability to follow-up/confirm individual planet candidates, but ensemble will be useful for statistics
- Overlap between the expected transiting and microlensing detections between 0.3-3 au will also enable significant improvements in population studies

Wilson+2023

Transiting planets with the PLATO mission

ESA - M. Pédoussaut

PLATO Mission (ESA) (PLAnetary Transits and Oscillations of stars)

ESA/ATG medialab

- ESA M3 mission
- Launch December 2026
- 26 telescopes with 12cm aperture each
- First 10 flight model cameras completed
- ~49°x 49° field-of-view
- High precision photometry : 4 ≤ mv ≤ 11 (13)
- 4 years mission operations (8.5 yrs consumables)
- Goal: Detect and characterize (radius, mass, age) exoplanets, including small planets in the habitable zone of solar-like stars.

The PLATO Mission

Methods:

Transit detection

- → Planet/star radius ratio
- → Inclination

Asteroseismology

- → Stellar radius, mass
- → Stellar age

→ Planet mass

- Mean density
- Age

The PLATO Instrument

24 Normal cameras:

- 12cm aperture telescopes
- range: $\sim 4 \le m_V \le 13$
- FOV payload ~49°x 49° (2132 deg²)
- Each camera has 4 x CCD, each 4510×4510px
- Pixel scale 15 arsec/pixel
- read-out cadence: 25 sec
- operate in "white light" (500 1000 nm)

2 Fast cameras:

- range: ~4 ≤ m_V ≤ 8.2
- read-out cadence: 2.5 sec
- one "red" & one "blue" camera

A camera during testing

Total FOV ~2132 deg² (vs 105 deg² Kepler)

PLATO fields

PLATO will observe (assuming 2 target fields observed 2 years each):

- ~15 000 dwarf and subgiant stars (F5 to K7) with V < 11 mag
- > 245 000 dwarf and subgiant stars
- V < 13 mag
- V < 16 mag for M stars

A word on data analysis:

- Planets and stars will be analyzed by the PLATO pipelines
- Organize RV for mass determination (for Prime Sample)
- → Deliver a catalogue of planet parameters based on same pipeline

Small planets in the habitable zone

Mass <15 M_earth, radius <10R_earth

With <10% mass and <5% radius precisions

PLATO yield of transiting planets

Expected transit yields with 4 years mission scenarios:

Targets	Observing Strategy		
	2+2 years	3+1 years (ste	ep+stare)
V<11 mag, all planet types	1200 - 1350	2300 - 2700	
V<13 mag, all planet types	4600 - 7150	10300 - 10800	
V<11 mag, planets <2 r_earth, G0V host star	0 - 120	0 - 140	← Larg

← Large uncertainty due to unknown eta-Earth!

ESA-SCI(2017)1; Heller et al. 2021, Matuszewski et al. (2024), Cabrera et al. (in prep.) see also Rauer et al. 2025

Comparison of PLATO sensitivity to TESS

Eschen et al. 2025

Transiting planets with the Chinese Earth 2.0 mission

Ge et al. 2024

Chinese Earth 2.0 mission

- Scheduled to launch 2028
- 6 x 28cm telescopes, 550 square degree field of view, returning to the Kepler field
- Expected to reach 28ppm/6.5hr
- Yield of ~40,000 transiting planets
 (Ge et al. 2024)

Ge et al. 2024

Chinese Earth 2.0 mission

- Scheduled to launch 2028
- 6 x 28cm telescopes, 550 square degree field of view, returning to the Kepler field
- Expected to reach 28ppm/6.5hr
- Yield of ~40,000 transiting planets
 (Ge et al. 2024)

Ge et al. 2024

Mission Comparison

The detection range of transit missions is determined by telescope aperture size and field-of-view:

- Small telescope size → bright target stars (CoRoT, TESS, CHEOPS, PLATO):
 - ground-based radial velocity follow-up to determine planetary masses.
 - asteroseismology on host stars for ages
- Large telescope size → more (fainter) targets (Kepler, Roman, Earth 2.0):
 - high number of detected planets
 - planet population studies
- Large field-of-views provide more targets (TESS, PLATO, Earth 2.0):
 - several small telescopes
 - Stepping/scanning several target fields
- The combination of bright target stars with large fields results in high number of detected and characterized planets.

credit Caltech/IPAC-NExScI

Summary

Exoplanet research in the next decade:

- large population studies for understanding planet occurances and planet formation theories
 (Roman, Earth 2.0)
- populations of characterized planets: different types, ages, interiors, .., understanding planet evolution
 (PLATO)
 - → to be combined with atmosphere characterization from JWST, ARIEL and ... HWO, LIFE.

Thanks to
Jessie Christiansen, Elise Furlan and Chas Beichman
providing the slides on Roman and Earth 2.0