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First detection of an 
exoplanet (1988)

First detection of an 
exoplanet around a 
Sun-like star 
(Nobel Prize 2019)



Pre-Kepler, theorists thought we should see rocky planets and gas giants and 
very few in between

Ida & Lin (2004)



Ida & Lin (2004)

Post-Kepler, most (of the 
discovered) planets in our 
Galaxy fall right in-between!
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Pre-Kepler, theorists thought we should see rocky planets and gas giants and 
very few in between
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NASA/JPL-Caltech/T. Pyle (SSC)

Some gas accreted by 
cores and become 
planetary atmospheres

Some gas  
accreted 
onto the star

Some gas 
blown away 
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Physics of gas accretion
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Physics of gas accretion

Advective
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Maximally cooled
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Strong dependence 
from central mass 
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Thermally unimportant

Savignac & EJL ‘24
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EJL, Karalis & Thorngren (2022)

Formation alone can carve 
out the radius gap

Hotter disk; smaller Bondi 
radius; gap shifts to larger 
radius



H/He envelope vs. waterworld

Luque & Pallé ‘22 Tight MR distribution = waterworld?

Not necessarily!

Rogers+’23

H/He envelope

Waterworld

Rogers ‘25
PI: M. McGregor



Post-formation 
evolution

Affected by the host star

Photoevaporative mass loss

Tidal orbital decay
Magnetic decay & heating

<30-50 days

<1-3 days
<1 days



EJL, Karalis & Thorngren ‘22

Fo
rm

at
io

n
Po

st
-e

va
po

ra
ti
on

Long-period 
rocky planets: 
primordial

Short-period super-Earths too massive: photoevaporation
Post-formation 
evolution

Owen & Wu ‘13, ’17
Lopez & Fortney ‘14
Jin & Mordasini ‘14

Photoevaporative mass loss

<30-50 days



Short-period small planet population

Raw data from NASA Exoplanet Archive

Ultra-short period planets



Murray & Dermott

For stellar spin and orbital motion to
become synchronous:
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For a 5𝑀⨁ planet orbiting 
a solar mass star:
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Tidal quality factor: hiding all 
the uncertain physics of 
dissipation

Bulge lags behind because 
of “friction” inside the star

Star is on the main sequence 
so spin period > 1 day

Short-period physics: tides



EJL & Owen ’25 data from NASA Exoplanet Archive; <2 Rearth; precise mass measurement
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EJL & Owen ’25 data from NASA Exoplanet Archive; <2 Rearth; precise mass measurement
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Sun-like starsK dwarfsEarly-mid MLate M

Lighter planets drive 
less tides so more 
likely to survive

Requires larger tidal 
dissipation for cooler stars 
to match data

Stronger tidal dissipation



Raw data from NASA Exoplanet Archive

Ultra-short period planets

Short-period small planet population



Planet plucks 
the field lines

Planet is losing orbital angular momentum to stellar spin

The entire system is losing energy through Joule heating

Alfven velocity > orbital velocity: 
causal connection and minimal 
twist in field
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Short-period physics: electromagnetism



EJL & Owen ‘25

Lower B-field

Schulyak+19

Slow rotators >~ 30-40 days



Consequence of 
magnetic drag

Planet destroyed!

Catastrophically 
disintegrating planet 
(Rappaport+12)Heat flux ~10 W/m2: 

comparable to Io 
volcanism!

EJL & Owen ‘25



EJL & Owen ‘25; Raw data from NASA Exoplanet Archive

Rocky planets 
beyond ~100 
days: initial 
conditions

More mass 
measurement: 
tidal physics

Magnetic volcanism? 
Spectra for optical 
refractory species

Probe formation historyProbe star-planet 
interaction

Younger systems: 
H/He vs. 
waterworld


