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A: The coolest stars in
the spectral sequence
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A: The majority of stars
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A: A diverse population

Stars within 10pc
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M dwarfs

Stars within 10pc
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A: A diverse population

fully convective

Stars within 10pc
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A: Ideal hosts for studying exoplanets

Sun-like star (G-dwarf) Red Dwarf (M-dwarf)
Size = 1 Solar Radius Size = 0.5 Solar Radius
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A: Ideal hosts for studying exoplanets
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A: Ideal hosts for studying exoplanets

Wavelength
1.8 microns
2.1 microns
2.3 microns

NASA



A: Ideal hosts for studying
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A: Ideal hosts for studying exoplanets
TRAPPIST-1 System

NASA/JPL-Caltech
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Dressing & Charbonneau 2015

“For orbital periods
shorter than
and planet
radii of 1-4 Ry,
we estimated a
cumulative planet
occurrence rate of
2.5 £ 0.2 planets =
per M dwarft” Period (Days)
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Median M« = 0.50M, Dressing & Charbonneau 2015

“For orbital periods
shorter than
and planet
radii of 1-4 Rg,
we estimated a
cumulative planet
occurrence rate of
2.5 + 0.2 planets -
per M dwarf” Period (Days)
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-Demographlcs
-dwarf planets:
I-n the 4 ESS Era
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Cumulative TESS Sky Coverage as of Sector 094 (98.6%)
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How is TESS
different?

% All-Sky

oyt tess.mit.edu

<+ Only 27-day sectors

b2 bandpass Lo
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Wavelength (nm)

Z. Berta-Thompson with data from Sullivan et al. (2015)



Ment & Charbonneau 2023

M dwarfs have
far fewer
Sub-Neptunes

Median M« = 0.17M,




Ment & Charbonneu 2023

M dwarfs have
far fewer
Sub-Neptunes
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Orbital period P [days]

Median M« = 0.17M,

Planet radius 7 |Rgarth




Ment & Charbonneau 2023

Occurrence rate model g(P,r

M dwarfs have ) ot
far fewer
Sub-Neptunes

Y% Planet detections
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Rocky (R<1.5Rg) 0.48=0.14 0.490.17

Sub-Neptunes  0.49:0.10  <0.06
(R>1.5Rg)

Ratio 1:1 13:1 Planet radius 7 [Rgarth



Bryant et al. 2023

Transits tell
us that

P <10 days
are rare for

early Ms, and B
even rarer for g

This Work
an et al. (2022)
eleznay & Kunimoto (2022)

G
B
Petigura et al. (2018)

1.0 1.5
Stellar Mass (Mg)




Pass et al. 2023

S5[Se]
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From RVs, ‘B o animancs I
we know that .
the same I %%% a0
applies to

Cold Jupiters

1.5%  1.6%  1.8% | 2;




Terrestrlal planets are common +
e ~giant planets are rare =
system archltectures are unllke ours

ESO/M. Kornmesser



A Terrestrlal planets are common +
ol & = s glant planets dare rare =
M dwarf system archltectu res are unllke ours

41% of Sun-like stars with an inner
small planet have an outer Jovian
(Rosenthal et al. 2022) L O



The r Present-day distance from Earth to the Sun (1 AU)
Sun 2 4 6 8 10 12

Our solar system =
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The (— Present-day distance from Earth to the Sun (1 AU)
Sun 2 4 6 8 10 12

Our solar system 2
would be very [z g v e oo

different
without
Jupiter

Jupiter controlled the flow of icy material and
dynamically sculpted the inner solar system.
= without Jovians, the compositions and

water inventories of terrestrial planets of
low-mass M-dwarfs may be quite different.
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Demographlcs Beyond
Occu rrence Rates:

What are these planets made of?



Agol et al. 2021

400

TRAPPIST-1:
It’s all rocks

<
<« D 'EE': | 4‘3
... all seven planets T 0 ]
oy o . = =
densities may be described [ g
. - +«— 0.8 E
with a single rocky mass- [ S
. . . . rol 2
radius relation which is 0.7 s
re'ative tO - ——Fe/Mg=0.75, Mg/Si=1.02, m_,___/M=0.05 ©
Earth, with Fe 21 wt% e e
versus 32 Wt% for Earth, 0.5 —— Fe/Mg=0.83, Mg/Si=1.02 (cov:(aat-efrree, solar)
. , Fe/Mg=0.75+0.2, Mg/Si=1.02 (suggested by U18)
and OtherWISe Ear‘th_ » - = Fe/Mg=0.83, Mg/Si=1.02 (solar abundance)
like in composition” ' ' " anetmassmmy



The Of the Cloutier & Menou 2020

= Measured slope (this work) @ known rocky (12)

radius valley is |
different for M
dwarfs’
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This has implications for

planet formation
theories

Orbital period [days]

* From Kepler/K2, so these are early M dwarfs
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The Of the Cloutier & Menou 2020
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The Of the Cloutier & Menou 2020

= Measured slope (this work) @ known rocky (12)
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What S Next‘?
Demographlcs of
Atmospheres



JWST Home About JWST News & Events Instrumentation Science Planning Science Execution Documentation

Home > James Webb Space Telescope > News & Events > News

Rocky Worlds DDT Selects its First Targets

View all news >

September 19, 2024

The Rocky Worlds DDT Program [ will use JWST to search for atmospheres around a dozen nearby M-dwarf exoplanets while using HST to characterize activity in
the host stars. Over the past month, community members have provided feedback on a provisional set of targets —the Targets Under Consideration (TUC) [ list.
Based on that feedback, the Science Advisory Council (SAC), together with the Leads of the Core Implementation Team (CIT), have identified an initial set of targets
for JWST MIRI 15 pm photometry:

e LTT 1445 A c (11 eclipses)
e GJ 3929 b (15 eclipses)

Further targets will be selected after the results of the JWST Cycle 4 Call for Proposals are published in March 2025. Proposers may not apply for Cycle 4 Archival
Research programs to analyze these data, as STScl cannot guarantee that all data will be in the archive when Cycle 4 begins. However, the SAC and CIT leads would
like to encourage the community to consider JWST Cycle 4 proposals for complementary and supplementary observations of these targets or Theory programs. The
standard JWST Duplication Policies apply. Additional exoplanet targets will be selected after the results from the Cycle 4 Telescope Allocation Committee are
known. The DD program will be structured to avoid duplicating Cycle 4 General Observers programs.

We also highlight the importance of ancillary observations from ground and space-based facilities to better characterize these stellar systems and help prioritize
future target selection. In particular, the following observations are critical for all targets in the TUC, specially those with high Priority Metrics and/or radii < 1.6

REearth:

* Precise radial-velocity monitoring: This is crucial to constrain the rocky nature of the planets via their bulk density and the planetary escape velocity
(mass) which is reauired to match taraets aaainst the “Cosmic Shoreline” (and to calculate the Prioritv Metric). In addition. thev set important constraints



Stellar act|V|ty can S
‘ exoplanet
atmospheres

B and M dwarfs are
actlve for a Ieng tlme



Stellar act|V|ty can S
‘ exoplanet
atmospheres

 01Mo: 4.4 Gyr
0.2Mo: 2.8 Gyr
0.3Mo: 1.3 Gyr

o Pass et al. 2024

e and M dwarfs are
actlve for a Ieng tlme



Kreidberg et al. 2019

Are all
M-dwarf
planets

Spitzer phase curve of LHS 3844 b



Star plus planet dayside
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Eclipse

Transit Star plus planet nightside
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Kreidberg et al. 2019

Poor heat redistribution + Hot dayside

Are all o] e 7 b
M-dwarf [ b
* X
planets |

+ +<:o|d nightside
H |

Spitzer phase curve of LHS 3844 b



Zahnle & Catling 2017
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ela Pass et al. 2025

Atmosphere Retention Metric (ARM)
, -2 -1 0

this picture
doesn’t look
too good...
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ela Pass et al. 2025

Atmosphere Retention Metric (ARM)
-2 -1 0

this picture
doesn’t look
too good...

.. but JWST
will put this )
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Summary of -dwarf pIanet
e demographlcs '

There is a blg dlff'erence between early and M dwarfs (in their

o |nternal structure, activity Ilfetlmes planet demographlcs and more)

SmaII planets are abundant (on average, more than one per star)

Early and Iate M dwarfs have similar numbers of rocky planets on
short orblts but te ! have far fewer sub Neptunes

ey G|ant planets are rare (and get rarer for late M dwarfs)

0 Do dearf rocky worlds have atmospheres? Time will tell.



