

WHAT IS A SUB-NEPTUNE?

BJ Fulton

NASA Exoplanet Science Institute
Caltech - IPAC

Why ask the question?

- Kepler showed us that planets with radii between that of Earth and Neptune are extremely common
- But there is no example in our Solar System
- They likely span a range of sizes, masses, and likely compositions
- What actually defines them radius? mass? atmosphere? formation history?
- Understanding them is key to planet formation, evolution, and habitability

Howard et al. (2013)

The Radius Gap

Working Definition

- Planets with radii
 ~1.7 to ~4 Earth radii
- Masses typically between
 ~3 and ~20 Earth masses
- Lower density than rocky planets — must have volatiles (gas and/or ices)
- Could include failed gas giants, water worlds, or anything between

Plausible Explanations for the Gap

Photo-Evaporation

Predicted by Theory

- Owen & Wu (2013)
- Lopez & Fortney (2013)
- Jin et al. (2014)
- Chen & Rogers (2016)

Explanation

- High energy XUV photons emitted during star's first 100 Myr erodes envelopes
- Most sub-Neptunes are ~3% H/He by mass
 - 3% H/He envelopes have longest mass loss timescale
 - Planets are "herded" into two typical sizes

Photoevaporation Creates Radius Gap

Planets are converted into either

- ~2–3 *R_E* sub-Neptunes (rocky core with ~3% envelope)
- < 1.5 R_E super-Earths (rocky core with no envelope)

Simulation: J. Owen, Animation: E. Petigura

Photoevaporation

Fulton & Petigura (2018)

Major Implications

- Earth-density cores (water-poor)
- Large scale migration after
 100 Myr is uncommon

Owen & Wu (2017)

Jin & Mordasini (2018)

Other Explanations for the Gap

· <u>Impacts</u>

- Pebble accretion
 (e.g. Chatterjee & Howard 2018)
- Giant impacts
 (e.g. Inamdar & Schlichting 2016;
 Biersteker & Schlichting 2018)
- · Outgassing
 - Outgassing of a few percent by mass (e.g. Dorn et al. 2018)

- Core heating
 - Vazan et al. (2017); Ginzburg et al. (2018); Gupta & Schlichting (2018)
 - Reproduced observations well: gap, rocky cores, slope

Common Thread

GJ1214b

Radius: 2.7R⊕ Mass: 6.3M⊕

Kreidburg et al. (2014)

GJ1214b: Water in a Hazy Atmosphere?

- Envelope mass fraction ≥8% (H₂O and/or H/He) needed to explain mass/radius
- JWST MIRI phase-curve (mid-IR) shows hints of H₂O absorption features from both dayside & nightside
- Bond albedo ~0.51

TOI-421b

EXOPLANET TOI-421 b

HOT SUB-NEPTUNE

NIRISS | Single Object Slitless Spectroscopy NIRSpec | Bright Object Time-Series Spectroscopy

Radius 2.68 R⊕ Mass 7.2 M⊕

Davenport et al. 2025

K2-18b

EXOPLANET K2-18 b

ATMOSPHERE COMPOSITION

NIRISS and NIRSpec (G395H)

Madhusudhan et al. (2023)

Radius 2.6 R⊕ Mass 8.6 M⊕

So What Is a Sub-Neptune?

- Radius between 1.7-4.0 R⊕
- Has a volatile-rich envelope (H/He and/or water)
- Structurally distinct from rocky super-Earths
- Shaped by formation location, gas accretion, and atmospheric loss
- Confirmed by both bulk density and now atmospheric composition

What We Still Don't Know

Seager et al. 2021

- What fraction are water-rich vs. gas-dwarfs?
- Do sub-Neptunes ever host liquid oceans?
- Nature vs. Nurture
- Why does our Solar System lack one?

Summary

- Sub-Neptunes are the most common planets in the galaxy
- The Radius Gap divides two physically distinct populations
- Atmosphere retention/loss is key to their identity
- JWST is just beginning to peel back the haze and measure atmospheric compositions

