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Why ask the question?

Kepler showed us that planets with
radii between that of Earth and
Neptune are extremely common

Neptune -
3.8 Earth radii

But there is no example in our
Solar System

They likely span a range of sizes,

masses, and likely compositions 11.2 Earth radii

What actually defines them —
radius? mass? atmosphere?
formation history?

Fraction of Stars with Planets (close-in orbits)

Understanding them is key to 1.0 14 20 28 40 57 80 113 16.0 226
. : Planet size (relative to Earth)

planet formation, evolution, and

habltablllty Howard et al. (2013)
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Working Definition

Planets with radii
~1.7 to ~4 Earth radii

Masses typically between
~3 and ~20 Earth masses

Lower density than rocky
planets — must have volatiles
(gas and/or ices)

Could include failed gas
giants, water worlds, or
anything between

3x Size of Earth

Hydrogen
& Helium
Envelope

Water

Rocky Core



Plausible Explanations for the Gap



0.3/0.7 Fe/MgSiO3 +0.2% H/He +2% H/He +10% H/He
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Photo-Evaporation

- Predicted by Theory

e Owen & Wu (2013)
* Lopez & Fortney (2013)
* Jin et al. (2014)

* Chen & Rogers (2016)

- Explanation

* High energy XUV photons emitted
during star’s first 100 Myr erodes
envelopes

* Most sub-Neptunes are ~3% H/He by
mass

* 3% H/He envelopes have longest
mass loss timescale

* Planets are “herded” into two typical
sizes
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XUV photons 20% H/He

~3% H/He

~3 M. Core

o
—
N

—

typical
uncert.

o
O
o

o
o
®

g,
Q,'
0‘3’/
’
/a‘,%,
Y

)
¥
r & / Unstable to
r O Evaporation

Mass-loss timescale [Myr]

Number of Planets per Star
(Orbital period < 100 days)
o o
o o
H (o)}

o
o
N

o
o
S

1073 102 101 18 24 35 45 60 80 120 200
Envelope Mass Fraction Planet Size [Earth radii]

Oewn & Wu (2017)




XUV photons
~0.3% H/He

0% H/He

~3 M. Core
~3 M. Core
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Photoevaporation Creates Radius Gap

Planets are converted into either
o ~2—3 Re sub-Neptunes (rocky core with ~3% envelope)
e < 1.5 Re super-Earths (rocky core with no envelope)
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Simulation: J. Owen, Animation: E. Petigura



Photoevaporation

Fulton & Petigura (2078)

Major Implications

w
o

Observatiois - ...
typical
uncert.

¢ Earth-density cores
(water-poor)

N
~

¢ | arge scale migration after
100 Myr iIs uncommon
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Other Explanations for the Gap

- Impacts

- Core heating

- Pebble accretion
(e.g. Chatterjee & Howard 2018)
e Vazan et al. (2017); Ginzburg et

- Giant impacts _ S
(e.g. Inamdar & Schlichting 2016; al. (2018); Gupta & Schlichting
Biersteker & Schlichting 2018) (2018)

gouigassing e Reproduced observations well:
- Outgassing of a few percent by mass gap, rocky cores, slope

(e.g. Dorn et al. 2018)

w
)

0.012

Observations
—— Model

0.01

N
N
n
H

0.008

e occurrence

0.006

a
-

Relativ
(w]
(]
(e
e
—
13}

Planet size (Earth radii)

Planet Size [Earth radii]

1.5 24 3.5
Planet size (Earth radii)

-y
o

: 10 30
Orbital period (days) Orbital period [days]

Gupta & Schlichtung (2018)



Common Thread

Super-Earths

Rocky Rocky Young Fully Formed
Building Blocks Cores Planets Planets



GJ1214b
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GJ1214b: Water in a Hazy
Atmosphere?

Envelope mass fraction =8% — 437 K blackbody

(H20 and/or H/He) needed to
explain mass/radius

JWST MIRI phase-curve (mid-
IR) shows hints of H20
absorption features from both
dayside & nightside
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Kempton et al. 2023



EXOPLANET T0I-421 b

NIRISS | Single Object Slitless Spectroscopy
NIRSpec | Bright Object Time-Series Spectroscopy

HOT SUB-NEPTUNE

| I Water ® NIRISS  © NIRSpec | Best fit model
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EXOPLANET K2-18 b

ATMOSPHERE COMPOSITION N ——

+ Data — Best-fit Model
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e Radius 2.6 R® Mass 8.6 M®



S0 What Is a Sub-Neptune?

Radius between 1.7-4.0 R®

Has a volatile-rich envelope
(H/He and/or water)

Structurally distinct from
rocky super-Earths

Shaped by formation
location, gas accretion, and
atmospheric loss

Confirmed by both bulk
density and now atmospheric
composition



What We Still Don’t Know

Iron core Iron core Iron core
/ Rocky mantle / Rocky mantle Rocky mantle
Water outer layer Water outer layer

Hydrogen- and Massive
. Hydrogen T~ helium-rich water vapor

atmosphere atmosphere atmosphere

Outgassed envelope Nebula-captured envelope Water-dominated
Seager et al. 2021

 What fraction are water-rich vs. gas-dwarfs?
Do sub-Neptunes ever host liquid oceans?
 Nature vs. Nurture

 Why does our Solar System lack one?



Summary

Sub-Neptunes are the most common planets in the galaxy
The Radius Gap divides two physically distinct populations
Atmosphere retention/loss is key to their identity

JWST is just beginning to peel back the haze and measure atmospheric
compositions
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