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Introduction and Novelty
Rogue planets, unbound to stars, are detected via microlensing but lack de-
mographic constraints (Sumi et al., 2011; Mróz et al., 2017). This work
introduces a theoretical framework deriving distinct mass functions for rogue
planets from two ejection mechanisms:
▶ Internal Dynamics: Ejects low-mass planets via multi-planet

scattering.
▶ Stellar Flybys: Ejects higher-mass planets in dense stellar

environments.
Key findings:
▶ Analytical mass functions: dN/dM ∝ M−3.7 (internal), M−2.85 (flybys).
▶ Mass-dependent ejection probabilities, e.g., Pej(M) ∝ M−1.35 (internal).
▶ Microlensing event durations: 0.1–1 days (internal) vs. 1–17 days

(flybys).
These models yield testable predictions for surveys like the Nancy Grace Roman
Space Telescope (Spergel et al., 2015).

New Model Features
Our framework introduces:
▶ Mass-Dependent Scattering: For internal dynamics,

σij = π
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yielding Pej(Mi) ∝ M−1.35
i .

▶ Flyby Impulse Model:

∆v ≈ 2GMpert
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with Pej(Mp, a) ∝ a3/2M−0.5
p .

▶ Initial Distributions: dN/dM ∝ M−2.35, dN/da ∝ a−1 (Winn &
Fabrycky, 2015).

These features enable precise demographic predictions, improving on prior
universal mass function assumptions (Sumi et al., 2011).
Simulations of dense clusters suggest that the probability of a star losing a
planet via stellar encounters is independent of mass.
If the initial mass function is steep, only a small fraction of ejected planets are
gas giants.
Mass-dependent gravitational scattering and stellar perturbations modulate
primordial IMFs into distinct rogue planet power-law mass functions, with
microlensing timescales scaling as M1/2 encoding dynamical ejection signatures
and Galactic population ratios.

Mathematical Results
Internal Dynamics:

Γej(Mi) ∝ ∫ 10MJup
0.1M⊕ (Mi + Mj)M−2.35

j dMj,

dNint
dM ∝ M−3.7, βint = 3.7.

Predicts 99.9996% of rogue planets have 0.1–10 M⊕.
Stellar Flybys:

dNfly
dM ∝ M−(2.35+0.5) = M−2.85,

βfly = 2.85, predicting 0.000033
Microlensing Predictions: Event duration tE ∝ M1/2:
▶ Internal: dN/dtE ∝ t−6.4

E (peak: 0.3 days for 1 M⊕).
▶ Flybys: dN/dtE ∝ t−4.7

E (peak: 3 days for 1 MJup).
Matches Roman Telescope sensitivity (Spergel et al., 2015).

Physical Evidence and Affirmations
▶ Internal Dynamics: Low-mass planets (M < 10 M⊕) have weaker bind-

ing energies, Eb ∝ MM⋆/a, making them 10–100× more likely to be
ejected than gas giants (Raymond et al., 2010). Our βint = 3.7 matches
simulations (Veras & Raymond, 2012).

▶ Flybys: Wide-orbit planets (a > 10 AU) have binding energies ∝ a−1,
increasing ejection for massive planets (Pfahl & Muterspaugh, 2005). Our
βfly = 2.85 reflects this.

Quantitative evidence:
▶ Internal: 0.12 ± 0.03 rogue planets per multi-planet system (50% system

prevalence) (Sullivan et al., 2015).
▶ Flybys: 0.015 ± 0.005 rogue planets per star in clusters with

n⋆ = 100 pc−3 (Malmberg et al., 2011).

Results and Implications
▶ Demographic Contrast: Internal dynamics dominate low-mass rogue

planets (About 100% at 0.1–10 M⊕); flybys contribute 0.000033% gas
giants (0.1–10 MJup).

▶ Observational Signatures: Microlensing events of 0.1–1 days indicate
internal dynamics; 1–17 days suggest flybys.

▶ Galactic Impact: If internal dynamics prevail, rogue planets may out-
number bound planets by 2:1 (Sumi et al., 2011).

▶ Newer microlensing surveys and demographic analyses indicate higher
(rogues:bound) ratio 6-20:1 for low-mass planets. For Jupiter-mass rogues,
there are about 2 per star, as calculated.

Figure: Mass functions: internal dynamics (blue, M−3.7) vs. stellar flybys (red, M−2.85).

Discussion
This framework outperforms prior models by quantifying mass-dependent ejec-
tions, unlike delta-function assumptions (Mróz et al., 2017). Limitations in-
clude simplified dynamics and initial distributions. Future work:
▶ Model resonances (Ida et al., 2013)
▶ Simulate N-body interactions (Veras & Raymond, 2012)
▶ Explore cloud collapse (Kroupa, 2001)

Astrometry could enhance mass constraints (Gaudi, 2012).

Conclusions
We discovered:
▶ Novel mass functions (M−3.7, M−2.85) distinguishing ejection

mechanisms.
▶ Ejection probabilities (M−1.35, a3/2M−0.5) with physical grounding.
▶ Microlensing predictions (0.3 days vs. 3 days) for Roman Telescope.

These advance rogue planet demographics, guiding future surveys to probe
planetary system evolution.
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