Theoretical Modeling of Rogue Planet Demographics: Novel Mass Functions for Ejection Mechanisms

Shreesham Pandey

Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007, India shreeshampandey@gmail.com

Introduction and Novelty

Rogue planets, unbound to stars, are detected via microlensing but lack demographic constraints (Sumi et al., 2011; Mróz et al., 2017). This work introduces a theoretical framework deriving distinct mass functions for rogue planets from two ejection mechanisms:

- ► Internal Dynamics: Ejects low-mass planets via multi-planet scattering.
- ➤ Stellar Flybys: Ejects higher-mass planets in dense stellar environments.

Key findings:

- ► Analytical mass functions: $dN/dM \propto M^{-3.7}$ (internal), $M^{-2.85}$ (flybys).
- ▶ Mass-dependent ejection probabilities, e.g., $P_{\rm ej}(M) \propto M^{-1.35}$ (internal).
- ► Microlensing event durations: 0.1–1 days (internal) vs. 1–17 days (flybys).

These models yield testable predictions for surveys like the Nancy Grace Roman Space Telescope (Spergel et al., 2015).

New Model Features

Our framework introduces:

► Mass-Dependent Scattering: For internal dynamics,

$$\sigma_{ij} = \pi \left(rac{G(M_i + M_j)}{v_{
m rel}^2}
ight) \left(1 + rac{v_{
m esc}^2}{v_{
m rel}^2}
ight),$$

yielding $P_{\rm ej}(M_i) \propto M_i^{-1.35}$.

► Flyby Impulse Model:

$$\Delta v pprox rac{2GM_{
m pert}}{v_{
m pert}b} \left(rac{a}{b}
ight),$$

with $P_{\rm ej}(M_p,a) \propto a^{3/2} M_p^{-0.5}$.

► Initial Distributions: $dN/dM \propto M^{-2.35}$, $dN/da \propto a^{-1}$ (Winn & Fabrycky, 2015).

These features enable precise demographic predictions, improving on prior universal mass function assumptions (Sumi et al., 2011).

Simulations of dense clusters suggest that the probability of a star losing a planet via stellar encounters is independent of mass.

If the initial mass function is steep, only a small fraction of ejected planets are gas giants.

Mass-dependent gravitational scattering and stellar perturbations modulate primordial IMFs into distinct rogue planet power-law mass functions, with microlensing timescales scaling as $M^{1/2}$ encoding dynamical ejection signatures and Galactic population ratios.

Mathematical Results

Internal Dynamics:

$$\Gamma_{
m ej}(M_i) \propto \int_{0.1 M_{\oplus}}^{10 M_{
m Jup}} (M_i + M_j) M_j^{-2.35} dM_j, \ rac{dN_{
m int}}{dM} \propto M^{-3.7}, \quad eta_{
m int} = 3.7.$$

Predicts 99.9996% of rogue planets have $0.1-10 M_{\oplus}$.

Stellar Flybys:

$$\frac{dN_{\rm fly}}{dM} \propto M^{-(2.35+0.5)} = M^{-2.85},$$

 $\beta_{fly} = 2.85$, predicting 0.000033

Microlensing Predictions: Event duration $t_E \propto M^{1/2}$:

- ▶ Internal: $dN/dt_E \propto t_E^{-6.4}$ (peak: 0.3 days for $1\,M_\oplus$).
- ► Flybys: $dN/dt_E \propto t_F^{-4.7}$ (peak: 3 days for $1 M_{\text{Jup}}$).

Matches Roman Telescope sensitivity (Spergel et al., 2015).

Physical Evidence and Affirmations

- ▶ Internal Dynamics: Low-mass planets $(M < 10 \, M_{\oplus})$ have weaker binding energies, $E_b \propto M M_{\star}/a$, making them $10\text{--}100\times$ more likely to be ejected than gas giants (Raymond et al., 2010). Our $\beta_{\text{int}} = 3.7$ matches simulations (Veras & Raymond, 2012).
- ▶ **Flybys:** Wide-orbit planets (a > 10 AU) have binding energies $\propto a^{-1}$, increasing ejection for massive planets (Pfahl & Muterspaugh, 2005). Our $\beta_{\text{fly}} = 2.85$ reflects this.

Quantitative evidence:

- Internal: 0.12 ± 0.03 rogue planets per multi-planet system (50% system prevalence) (Sullivan et al., 2015).
- Flybys: 0.015 ± 0.005 rogue planets per star in clusters with $n_{\star} = 100 \, \mathrm{pc^{-3}}$ (Malmberg et al., 2011).

Results and Implications

- ▶ **Demographic Contrast:** Internal dynamics dominate low-mass rogue planets (About 100% at $0.1\text{--}10\,M_{\oplus}$); flybys contribute 0.000033% gas giants $(0.1\text{--}10\,M_{\text{Jup}})$.
- ➤ **Observational Signatures:** Microlensing events of 0.1–1 days indicate internal dynamics; 1–17 days suggest flybys.
- ► **Galactic Impact:** If internal dynamics prevail, rogue planets may outnumber bound planets by 2:1 (Sumi et al., 2011).
- ➤ Newer microlensing surveys and demographic analyses indicate higher (rogues:bound) ratio 6-20:1 for low-mass planets. For Jupiter-mass rogues, there are about 2 per star, as calculated.

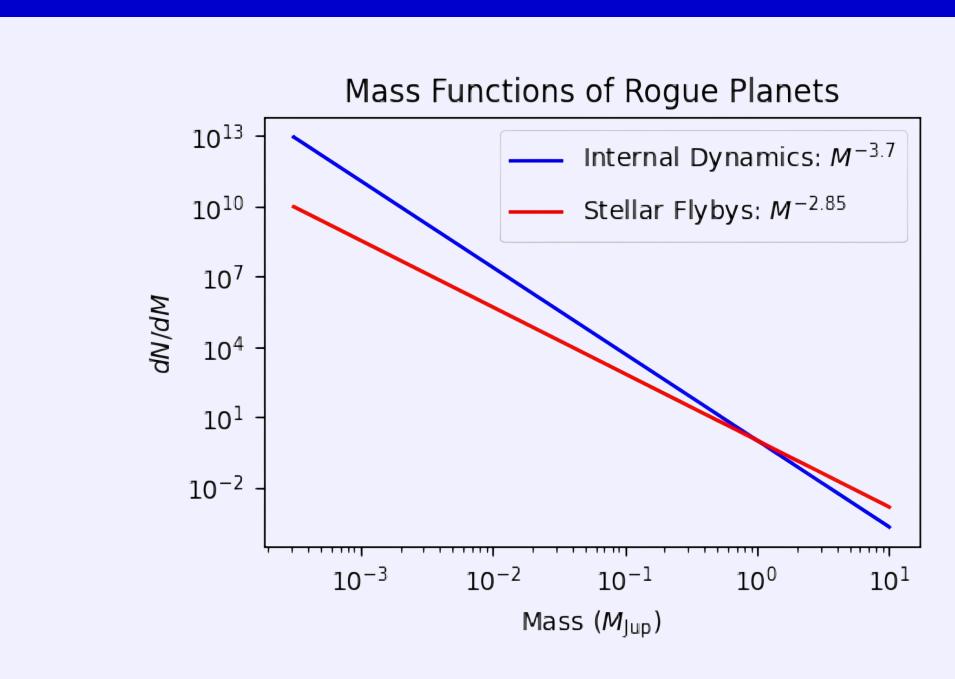


Figure: Mass functions: internal dynamics (blue, $M^{-3.7}$) vs. stellar flybys (red, $M^{-2.85}$).

Discussion

This framework outperforms prior models by quantifying mass-dependent ejections, unlike delta-function assumptions (Mróz et al., 2017). Limitations include simplified dynamics and initial distributions. Future work:

- ► Model resonances (Ida et al., 2013)
- ➤ Simulate N-body interactions (Veras & Raymond, 2012)
- ► Explore cloud collapse (Kroupa, 2001)

Astrometry could enhance mass constraints (Gaudi, 2012).

Conclusions

We discovered:

- Novel mass functions $(M^{-3.7}, M^{-2.85})$ distinguishing ejection mechanisms.
- ► Ejection probabilities $(M^{-1.35}, a^{3/2}M^{-0.5})$ with physical grounding.
- ► Microlensing predictions (0.3 days vs. 3 days) for Roman Telescope.

These advance rogue planet demographics, guiding future surveys to probe planetary system evolution.

References

Sumi et al. 2011, Nature, 473, 349 Mróz et al. 2017, Nature, 548, 183 Winn & Fabrycky 2015, ARA&A, 53, 409 Raymond et al. 2010, ApJ, 711, 772 Veras & Raymond 2012, MNRAS, 417, 2104 Pfahl & Muterspaugh 2005, ApJ, 627, 533 Malmberg et al. 2011, MNRAS, 411, 859 Spergel et al. 2015, arXiv:1503.03757 Gaudi 2012, ARA&A, 50, 411 Ida et al. 2013, ApJ, 775, 42 Kroupa 2001, MNRAS, 322, 231 Sullivan et al. 2015, ApJ, 809, 77