

LIFE BEYOND EARTH:

EXPLORING MACHINE LEARNING AND EARTH SIMILARITY INDEX (ESI) FOR EXOPLANET HABITABILITY ESTIMATION

Kishor Baniya^{1,2}, Vlad Veksler¹, Yangxing Yang¹, Suresh Bhattarai²

Caldwell University¹, Nepal Astronomical Society (NASO)²

MOTIVATION

- High volume of real-time data makes conventional analysis challenging. [1]
- Earth Similarity Index (ESI) offers a compact metric to rank potentially habitable worlds, but its empirical robustness is underexplored. [2]
- Understanding the PHL-adopted weightage of habitability parameters for ESI [3] with a data-driven model could unlock a new avenue.

METHOD

- Trained a Random Forest classifier in Python using Habitable World Catalog (HWC)[4] and a synthetic nonhabitable exoplanetary database. (Total 800 records.)
- Queried the NASA Exoplanet Archive [5] using Astroquery [6] to classify habitability of real-time discoveries.
- Compared the feature importance rankings from the ML model to the PHL's theoretical weights used in the ESI.
- Analyzed convergence and divergence between ML predictions and ESI scores, using verified planetary assessments for validation.

ANALYSIS & RESULTS

Figure 1: Feature Importance on Habitability Determination

Figure 2: List of potentially habitable exoplanets (with their respective ESI score)

Figure 5: Occurrence of Habitable (1) or non-Habitable (0) planets by planetary equilibrium temperature.

KEY FINDINGS

P lanetary Property	Reference Value	Weight Exponent
Mean Radius	1.0 Eu	0.57
Bulk Density	1.0 Eu	1.07
Escape velocity	1.0 Eu	0.70
Surface Temperature	288 K	5.58

Figure 6: PHL-adopted metric for ESI calculation. [3]

- Interestingly, in the feature importance results
 (Figure 1), surface temperature and planetary radius
 emerged as the most influential features, matching
 PHL's theoretical weights on habitability parameters.
- A well-defined cluster of potentially habitable planets lies within 0.5-2.5 Earth radii and 200-400
 K, providing a refined target envelope.
- However, not all exoplanets flagged as potentially habitable (Figure 2) are confirmed candidates—e.g., K2-3d, a likely tidally locked planet with a high H-He composition, shows high ESI approval.
- While machine learning complements theoretical models, reliance solely on current static parameters may limit it from reaching its potential. A more dynamic approach, such as data imputation for incomplete or evolving datasets, may therefore enhance future habitability assessments.

REFERENCES

- [1] Shallue, C. J. & Vanderburg, A. (2018), AJ 155, 94. [2] Brandl, C. (2015), Exoplanet Habitability and the ESI, ResearchGate.
- [3] Planetary Habitability Laboratory, UPR (2025), ESI
- [4] Méndez, A. (2023), Habitable World Catalog
- (HWC), PHL, UPR-Arecibo. <u>phl.upr.edu/hwc</u> [5] NASA Exoplanet Archive (2025), Caltech/IPAC
- Exoplanet Science Institute.
- [6] Ginsburg, A. et al. (2019), astroquery, ASCL

Figure 3: Occurrence of Habitable (1) or non-Habitable (0) planets by planetary radius.

Figure 4: Radius by Temperature plot in the occurrence of habitability.

