
Higher-Order Mean-Motion Resonances Can Form in Type-I Disk Migration
Finnegan Keller 1, 2, 3 Fei Dai 3, 4, 5 Wenrui Xu 6

1School of Earth and Space Exploration, Arizona State University 2Department of Physics, Brown University 3Institute for Astronomy, University of Hawai‘i
4Division of Geological and Planetary Sciences, California Institute of Technology 5Department of Astronomy, California Institute of Technology
6Center for Computational Astrophysics, Flatiron Institute

I. Background

There is mounting evidence that Kepler-like planets [∼ 0.1AU, < 4R⊕,
Np ≥ 3, 1, 2] could have formed initially in chains of mean-motion

resonance (MMR) through Type-I (non-gap-opening) convergent disk

migration [e.g. 3].

The order of an MMR is defined by the difference of two integers

involved (|p − q|, e.g. 3:2 is first-order, 5:3 is second-order, 8:5 is

third-order) and the strength of the MMR scales as orbital eccentricity

raised to the power of the order [(∝ e|p−q| 4, 5].

For most Kepler-like planetary systems, the orbital eccentricity is low

[. 0.05 e.g. 6, 7], so the weakness of any higher-order resonances

could aid the disruption of initially resonant Kepler-like systems [8].

Several multi-planet systems contain planet pairs near higher-order

resonances (Fig. 4), including Kepler-29 bc: 9:7 [9], TOI-178 bc: 5:3

[10], TOI-1136 ef: 7:5 [8], Kepler-138 cde: 5:3-5:3 [11], and

TRAPPIST-1 bcd: 8:5-5:3 [12].

II. Methods

We focus on Type-I migration of low-mass planets that do not carve a

gap in protoplanetary disks [13] after they have grown to their final

masses.

Disk migration prescriptions were implemented using the symplectic

WHFAST integrator [14, 15] with the type_I_migration [16] scheme in

REBOUNDx [17] and REBOUND [18].

By drawing select initial conditions from the NASA Exoplanet Archive,

simulated planetary systems retain the stellar-mass-planet-size

correlation [e.g. 19] and the ‘peas-in-a-pod’ pattern [e.g. 20].

The hallmark of true resonance is the libration (oscillation with a

bounded amplitude) of a resonant angle in the presence of a

separatrix, a generalized coordinate for the resonant Hamiltonian [4].

These resonant angles are linear combinations of the relevant planets’

mean longitudes and the (mixed) longitude of pericenters [e.g. 21, 22].

We identify two-body and three-body MMRs with libration amplitudes

under 90◦.

We examined all 36 first-, second-, and third-order MMRs ranging

from period ratio of 1.1 (11:10) to 4 (4:1). This set encompasses the

smallest observed pairwise period ratios [Kepler-36bc 7:6, see 23] and

the widest third-order resonance, 4:1.

III. A Case Study Higher-Order Resonance
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Figure 1. The migration history of a resonant chain with a second-order resonance

(innermost two planets 0 and 1, shown in red). Planet 0 and 1 were initially captured

into a 2:1 resonance. However, as longer-period planets joined the resonant chain, the

2:1 resonance broke and the planets captured into the nearby 5:3 resonance. A few key

milestones of the evolution have been labeled.

IV. Population-Level Results

We ran ∼ 6000 disk migration simulations. We found that 720/5494 or
13.03 ± 0.45% contain at least one second-order resonance and

98/5494 or 1.77 ± 0.18% contain at least one third-order resonance.

These fractions of higher-order resonance critically depend on the

prior range of disk surface density we assumed (10 − 10, 000 g cm−2).
More robustly, the relative proportion of individual resonances (e.g.

the fraction of planets in 5:3 v.s. 7:5 MMR) in our simulations are in

good agreement with observation (see Fig. 2).

Notably, within each order of MMR, the resonances with smaller

period ratios (defined Pout/Pin) are increasingly rare, both in

simulations and observations. This is because the planets have to

avoid being captured into all preceding MMRs before reaching the

deeper resonances [16].

The prevalence of the 2:1 and 3:1 MMRs are overestimated in our

simulations likely because: (a) middle planets may be missed in transit

observations since planets in the same system have small but finite

mutual inclinations [e.g. 24] and (b) middle planets can be removed

through long-term dynamical instability after disk dispersal [25].

Figure 2. The relative frequencies of individual first (top panel) and second-order

(bottom panel) MMR in our simulations and in the confirmed all-ages planet sample

from [3]. Note in the simulated samples, all planet pairs have librating resonant angles.

In the observed sample, there is not enough information to determine the dynamical

state of the planets. Simulations produced more 2:1 and 3:1 resonance than observed.

Smaller transit probabilities for inclined planets may underestimate planet counts (and

thus overestimate planet separations). Alternatively, overstability may preferentially

remove 2:1 and 3:1 MMRs directly [26, 27, 28].

Higher-order MMRs do not require initial period ratios that are

commensurate with the final resonance. Only 43 out of the
second-order 1124 pairs started with a period ratio within 2% of the

final resonance. Similarly, only 6 out of the 151 third-order pairs started
with near-commensurate period ratios.

In Fig. 3, we show the cumulative distributions of the initial and final

period ratios for all planet pairs that end up in second-order MMRs.

There are no discernible peaks in the initial period distribution near the

final resonances. This result holds across order.

Furthermore, we found that the initial periods of different orders had

statistically indistinguishable initial period ratios. The p-values from a

KS test [29] between the first and second-order was 0.2, and between

first- and third-order were 0.4.
The explanation is simple: most higher-order MMR have to undergo

substantial migration.

Figure 3. The initial period ratios and final period ratios for planet pairs that end up in

second-order MMRs. Notice that these planet pairs, which end up engaged in

higher-order mean-motion resonance, need not begin with commensurate period ratios.

V. Conclusion

TOI-1136

TRAPPIST-1

TOI-178

TOI-2076

Simulated 
System

Figure 4. A subset of observed resonant chains and the example system. We mark the

most proximal MMRs and observed librating triplets.

We performed ∼ 6, 000 Type-I simulations of multi-planet systems with

initial conditions that mimic the observed Kepler sample.

We found that Type-I migration coupled with a disk inner edge can

produce second- and third-order resonances in a manner that is

consistent with observations (Figs 2 and 4).

Planets that end engaged in a higher-order resonance need not begin

near the resonance (Figs 1 and 3).

For further motivation, methods, and findings, see the preprint [30].
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