Calibrating High-contrast Imaging Data

Robert De Rosa, European Southern Observatory

2024 Sagan Summer Workshop — Advances in Direct Imaging: From Young Jupiters to Habitable Earths

What do we want to measure?

Astrometry

- But where is the star?
- How do we transform from detector offsets to on-sky angular separations?

Astrometry

*Assumes higher-order optical distortion removed

Photometry

- How bright is the star?
- How do we convert from flux ratio to absolute flux?

Photometry

First, data reduction

Imaging Single filter (narrow/ broadband)

Integral field spectroscopy Low/medium resolution

Imaging

- Typical near-IR data reduction: dark subtraction, flat fielding, bad pixel fixing, etc.
- Instrument-specific pipelines:
 - Maintained by observatories, consortia, and/or the community.
 - Often not handled by your favorite PSF subtraction package.

Imaging — long wavelength

• Sky background is more problematic at longer wavelengths.

Imaging - long wavelength

• Sky background is more problematic at longer wavelengths.

Imaging — long wavelength

PCA-based sky subtraction can help, depending on conditions.
 e.g., <u>Hunziker et al. (2018)</u> applied to M-band NaCo data

• Low/medium-resolution spectroscopy at each pixel in your FoV.

With lense energy

Micro-spectra extraction:

 Aperture photometry perpendicular to dispersion direction

 Forward-modeling with model/empirical lenslet PSFs (e.g. <u>Samland et al. 2022</u>)

Imaging Single filter (narrow/ broadband)

Integral field spectroscopy Low/medium resolution

Tuesday's talk by Faustine Cantalloube

"PSF subtraction/Postprocessing"

Where is the star?

Open pupil

Pupil plane

Focal plane

Reticulate pupil mask

Pupil plane

Focal plane

Varying angle

Pupil plane

Focal plane

Varying spacing

Pupil plane

Focal plane

Varying thickness

Pupil plane

Focal plane

Without grid

With grid

~10-4

Pupil plane

Gemini/GPI

1.503 um

Phase vs. amplitude

Focal plane

Sahoo et al. 2020, Jovanovic et al. 2021 for rigorous on-sky implementation

Other types of coronagraphs (I)

Pupil plane: Apodizing Phase Plate (Otten et al. 2014)

Other types of coronagraphs (II)

Focal plane: Annular Groove Phase Mask "Vortex" Coronagraph (Mawet et al. 2005)

... and the planet?

Planet astrometry

 Typically done using forward modeling or negative planet injection techniques.

Relative astrometry

*Assumes higher-order optical distortion removed

Astrometric calibration

Higher-order distortions

Astrometric calibration

Absolute calibration

SPHERE/IRDIS (Maire et al. 2021)

Astrometric calibration

Absolute calibration

SPHERE/IRDIS (Maire et al. 2021)

Relative astrometry

*Assumes higher-order optical distortion removed

Relative astrometry

(**Bowler et al. 2015**)

How bright is the star?

Varying thickness

Pupil plane

Focal plane

Calibrating the calibration spots

Satellite spots are typically 10³-10⁴ fainter than the star and can be difficult to calibrate

- Internal calibration source using different exposure times.
- High flux ratio companions with well-measured fluxes

(Wang et al. 2014)

Off-axis PSF measurement

Star occulted (16s)

Neutral density filter (0.8s)

... and the planet?

Planet photometry

 As with astrometry, typically done using forward modeling or negative planet injection techniques.

Throughput (I)

Coronagraphic throughput

MIRI Lyot 1.0 Fractional Transmission 0.8 0.6 0.4 0.2 F2300C 0.0 2.5 10 1.5 0.5 2.0 3.0 0.0 Radial distance (arcsec)

JWST/MIRI Documentation

Throughput (II)

Algorithmic throughput

• Flux losses due to over-subtraction during post-processing.

Flux ratio to absolute flux

Stellar flux

Basic data :	
HD 218396 Ellipsoid	lal Variable
Other object types:	<pre>* (HD,AG,),MIR (AKARI,WISEA,),** (**,WDS),El* (2009yCat),V* (V*),X (1RXS),UV (TD1), NIR (2MASS),IR (IRAS)</pre>
ICRS coord. (<i>ep=J2000</i>) :	23 07 28.7157209544 +21 08 03.310767492 (Optical) [0.0370 0.0396 90] A 2020yCat.13500G
FK4 coord. (<i>ep=B1950 eq=1950</i>).	23 05 00.5212007858 +20 51 51.095996325 [0.0370 0.0396 90]
Gal coord. (<i>ep=J2000</i>) :	092.7642280719024 -35.5751122710814 [0.0370 0.0396 90]
Proper motions mas/yr :	108.284 -50.040 [0.056 0.059 90] A 2020yCat.13500G
Radial velocity / Redshift / cz :	V(km/s) -10.41 [0.23] / z(spectroscopic) -0.000035 [0.000001] / cz -10.41 [0.23] (Opt) A 2022yCat.13550G
Parallaxes (mas):	24.4620 [0.0455] A 2020yCat.13500G
Spectral type:	F0+VkA5mA5 C 2003AJ126.2048G
Fluxes (6) :	B 6.21 [0.01] D 2000A&A355L27H
	V 5.953 [0.010] D 2000A&A355L27H
	G 5.910741 [0.002960] C 2022yCat.13550G
	J 5.383 [0.027] C 2003yCat.2246OC
	H 5.280 [0.018] C 2003yCat.2246OC
	K 5.240 [0.018] C 2003yCat.22460C

$$M_K = m_K - 5 \left(log_{10} \frac{1000}{\varpi} - 1 \right)$$
$$f_1 = 10^{\frac{m_1 - m_0}{-2.5}} \times f_0$$

Stellar flux

2MASS flux calibration (Cohen et al. 2003)

TABLE 2 Zero-Magnitude Attributes of 2MASS Bands									
Filter	Bandwidth (µm)	In-Band (W cm ⁻²)	$F_{\lambda(iso)}$ (W cm ⁻² μ m ⁻¹)	λ (iso) (μ m)	Bandwidth (Hz)	$F_{ u(m iso)}$ (Jy)	ν(iso) (Hz)		
J	0.162	5.082E-14	3.129E-13	1.235	3.189E+13	1594	2.428E+14		
Uncert	0.001	1.608%	5.464E-15	0.006	2.155E+11	27.80	2.746E+1		
Н	0.251	2.843E-14	1.133E-13	1.662	2.778E+13	1024	1.783E+1		
Uncert	0.002	1.721%	2.212E-15	0.009	2.540E+11	19.95	2.139E+1		
<i>K</i> _s	0.262	1.122E-14	4.283E-14	2.159	1.682E+13	666.8	1.390E+1		
Uncert	0.002	1.685%	8.053E-16	0.011	1.409E+11	12.55	1.496E+1		

Only useful if you have broadband photometry in JHK...

Stellar flux in other bands

Photometry:

• Color transformations — relies on assumptions

Spectroscopy:

- Blackbody? OK for hot stars in the IR, but not for M-dwarfs
- Stellar models atmospheric (and evolutionary)
 - e.g. http://svo2.cab.inta-csic.es/theory/newov2/

Stellar flux in other bands

Flux ratio to absolute flux

In conclusion...

Calibrations are important:

- Observables are meaningless without them (e.g., planet pixel position, count rate in DNs, ...)
- Careful calibration needed to compare results between instruments (especially astrometry!).
- Error propagation from start to finish so your published uncertainties are as realistic as possible.

Some topics I missed:

- Polarimetry and interferometry
- Reference star differential imaging more of a technique than a calibration.

Thanks for your attention!

20 au

Jason Wang / Christian Marois

2009-07-31