A Direct Imager's Guide to Debris Disks

John Debes, STScI

Circumstellar dust samples the environment of stars

Debris Disks—a diversity of types

30 AU

Solar System w/out Sun λ = 0.55 μm

Neptune

Venus · Earth

Inner 12 AU x 12 AU

Mars

Jupiter .

Credit: A. Roberge & the Haystacks team

Credit: NASA/JPL/Caltech/R. Hurt (SSC)

White Dwarf Debris Disks

White Dwarf Planets with JWST?

Messier et al., (in prep.); Mullally et al., (2024)

Giant Star Debris Disks

Credit: A.Bonsor/ESA

Posters: 23 Hosseininezhad; 51 Voyer

Diverse morphology.

Schneider et al., 2014

Simple(?) Explanation

Simple(?) Explanation

Observing Disks

SEDs are limited in interpreting morphology

Hales et al., (2022)

Observing disks

Ertel et al., (2018b)

Observing disks

Schneider et al., 2014

Observing Disks

Maness et al., 2009

- 11

Observing Disks

Schneider et al., 2016

Technical details to directly imaging disks

Debes et al., (2019)

Technical Details to Imaging Disks

1.2

0.8 20

0.6 @

Hinkley et al., (2022)

Posters: 31 Lin; 36 Mullin

Forces on debris disk dust

Schneider et al., 2014

Forces on debris disk dust

Lee & Chiang (2016)

Posters: 2 Avsar; 6 Bovie; 42 Stuber; 82 Malin

New Frontiers—Exozodis and Hot Dust

Posters:41 Sanghi

V=5 star 3x10⁻⁹ Companion at 2.5 AU 5 Zodi disk at 3 AU V=5 star 3x10⁻⁹ Companion at 2.5 AU 5 Zodi disk at 3 AU CGI PSF

Hot Dust implications for Direct Imaging

Using the preferred dust grain model and location from Kirschlager et al., 2020:

R= 0.3 au; r_{dust} = 10⁻³-0.58 μ m;

Use MCFOST to predict integrated scattered light relative to the star at wavelengths of relevance to HWO Barely resolved hot dust at $\sim \lambda/D$ for HWO with contrast as much as 0.1% of the star

Hot Dust Implications for Direct Imaging

Hot dust is detected around ~20% of MS stars, repeatedly confirmed, it is real So far no good understanding of its origin, formation, properties **Plausibly a significant risk to exo-Earth imaging from supply scenarios & coronagraph leakage**

Summary

- Debris disks are the remnants of planet formation—they trace the planetary architectures of nearby stars, from rocky bodies to icy giants
- Their location, composition, and behavior under various forces tell us about the dust, their origins, and their evolution
- They are both the direct imager's trash, treasure, and unexpected surprise-they obscure and reveal planets in different ways