Interpreting Photometry & Spectroscopy From A Modeling Perspective

And Lots about.

Eileen Gonzales Assistant Professor San Francisco State University

Sagan Summer Workshop, July 25, 2024

What is your science question?

What are the key bits of information you want to explore through modeling?

Thermal Profile Chemical Abundances Disequilibrium Chemistry Vertical mixing C/O for formation Isotopologue abundances Cloud particle Size Cloud composition Variability Match Model to Data for fundamental properties Predictions of missing wavelength coverage Fit unexpected features And more.....

Clouds in Substellar Atmospheres

Clouds come and go, and return once more

Sulfide Clouds

Water Ice Clouds

Clouds suppress spectral features

Self-Consistent Grid models

A BARANA A AND A BARANA A AND A A

Forward Model vs Retrieval Model

Chemical Equilibrium retrievals

Free retrievals

Many knobs to turn

Decreasing consistency

What is a Forward Model

(Aka Grid Model) is self consistent model that includes all the physics and chemistry.

Assumes radiative-convective equilibrium, thermochemical equilibrium, and quench approximation

(See Marley & Robinson 2015 and <u>Heather Knuston 2018 SSW Talk</u> 1D Models Slide for more detail)

Forward Models: What do they include?

Effective Temperature Surface Gravity Metallicity C/O Kzz Fsed

Forward Models: Why use them?

Easy to use to compare to observations

Great for limited data coverage

Ideal Comparisons to retrieval fits

Great as predictions for proposals

Examples of Forward Models: - Sonora - ATMO - BT-SETTL - PHOENIX - Exo-Rem - Lacy & Burrows - And many more

https://emac.gsfc.nasa.gov/

What Are Atmospheric Retrievals

Theoretical inverse spectral modeling technique that makes minimal assumptions about the physics involved

Self-Consistent Grid models

Few knobs to turn

Chemical Equilibrium retrievals

Free retrievals

Many knobs to turn

Assume gas abundance is the same no matter the altitude

Gas abundances from thermochemical grid

How do Retrievals work?

Gonzales et al. (2020)

H_2O CH_4 CONH₃ Na K

Spectrum + Assumed Gases + Setup + Underlying Assumptions

Atmospheric Retrieval

Underlying Assumptions Radiative transfer treatment Gas opacities (i.e. Line Lists)

How the Sampler Works

Wavelength

 H_2O

Getting Parameter Values

OF Probability

$H_2O = -3.55 \begin{array}{c} +0.13 \\ -0.15 \end{array}$

What Comes Out?

Gas Abundances + Thermal profile **Retrieved Model Spectrum** + (cloud properties if included)

What Retrieval Codes are there?

At least 49 published codes

Catalogue of Exoplanet Atmospheric Retrieval Codes (https://zenodo.org/records/ 7675743)

	Contraction Contraction				
Code / Authors	Spectrum	Parameter	Code	References	
	туре	Exploration	LIIIK		
Sampling Based					
Madhusudhan & Seager	Transmission Emission	Grid, MCMC	—	Madhusudhan & Seager (
NEMESIS	Emission Transmission Reflection	OE, NS	Link	Lee et al. (2012) Barstow et al. (2013) Barstow et al. (2014)	
SCARLET	Transmission Emission Reflection	MCMC, NS	_	Benneke & Seager (2012) Benneke et al. (2019) Wong et al. (2020)	
MassSpec	Transmission	MCMC		de Wit & Seager (2013)	
CHIMERA	Emission Transmission Reflection	OE, MCMC, NS, SC-Grid	Link	Line et al. (2013) Swain et al. (2014) Piskorz et al. (2018)	
TauREx	Transmission Emission	MCMC, NS	Link	Waldmann et al. (2015b) Waldmann et al. (2015a)	
Lupu et al.	Reflection	MCMC, NS		Lupu et al. (2016)	
HELIOS-R	Emission	NS	Link	Lavie et al. (2017)	
APOLLO	Transmission Emission	MCMC	Link	Howe et al. (2017) Howe et al. (2022)	
POSEIDON	Transmission Emission	NS	Link	MacDonald & Madhusudl Coulombe et al. (2023)	
ATMO	Transmission Emission	MCMC, NS, SC-Grid	_	Wakeford et al. (2017) Evans et al. (2017)	
Brewster	Emission	MCMC, NS		Burningham et al. (2017)	
Pyrat Bay	Transmission Emission	MCMC	Link	Kilpatrick et al. (2018) Cubillos & Blecic (2021)	
HyDRA	Emission	NS		Gandhi & Madhusudhan	
PSG	Reflection Emission Transmission	OE, NS	Link	Villanueva et al. (2018)	
AURA	Transmission	NS		Pinhas et al. (2018)	
exoretrievals	Transmission	NS		Espinoza et al. (2019)	
Brogi & Line	Emission	NS	Link	Brogi & Line (2019)	
PLATON	Transmission Emission	NS	Link	Zhang et al. (2019) Zhang et al. (2020)	

Table 1. Catalogue of Exoplanet Atmospheric Retrieval Codes

When do you choose: forward model or a retrieval model?

Two Keys things to keep in mind:

1. Wavelength Coverage

2. Resolution

Brown Dwarfs Should be Your Friends

Brown Dwarfs As Exoplanet Analogs

Faherty et al. (2021)

EXOPLANET VHS 1256 b EMISSION SPECTRUM

(ERS Direct Imaging Team, Miles et al. 2023)

Wavelength of Light

microns

1. Cloud interpretations in the context of wavelength coverage and resolution

and PT profile parameterization

3. Unphysical results that can arise

Case Studies

2. Chemical Abundance interpretations in the context of wavelength coverage

Limited Data Coverage

Cloud Models Indistinguishable

For early L's: gravity depends on cloud model

Constraining optical depth depends on priors

Lueber et al. (2022)

Indistinguishable Cloud Models

C/O ratio and M/H are not affected by cloud model Gonzales et al. (2020) Gonzales et al. (2022)

Wavelength coverage: NIR Only Spectral Fit

Wavelength / μm

Silicate feature cannot be fit by retrieval using NIR data alone

Burningham et al. (2017)

Shape of the PT profile depends on wavelength coverage

MIR Wavelength coverage can distinguish cloud species

Burningham et al. (2021)

Silicate feature fit by retrieval but not grid models

High Resolution Spectra and Clouds

High resolution spectrum insensitive to clouds!

Wavelength coverage and continuum pressure level location plays a key role.

Spectral Resolution/coverage impacts abundance constraints

How the Profile is parameterized can impact results

How the Profile is parameterized can impact results

Two different PT profile parameterizations lead to differences in retrieved parameter values

Kothari et al. (2024)

Metallicity and Rejected Models

Table 6 Retrieved Gas Abundances and Derived Properties for SDSS J1256–0224 Indistinguishable Full Gas Set Models							
Parameter		Value for Ions for Continuum Opacities					
	[M/H]	[M/H] = -1.5		[M/H] = -2.5			
	C/O = 1.0	C/O = 0.25					
		Retrieved					
H ₂ O	$-4.58\substack{+0.16 \\ -0.14}$	$-4.57\substack{+0.18 \\ -0.16}$	$-4.71\substack{+0.20\\-0.19}$	$-4.60\substack{+0.19\\-0.18}$			
CO	<-5.63	<-5.57	<-5.74	<-5.67			
CO_2	< -4.79	<-4.91	<-5.45	< -5.49			
CH ₄	<-6.14	<-5.92	<-6.39	<-6.81			
TiO	<-9.75	<-9.71	<-9.88	< -9.77			
VO	<-9.92	< -9.98	<-9.87	< -9.87			
CrH	$-8.95_{-0.16}^{+0.14}$	$-8.95\substack{+0.16\\-0.19}$	$-9.08\substack{+0.18\\-0.19}$	$-9.03\substack{+0.20\\-0.19}$			
FeH	$-9.49\substack{+0.59\\-1.32}$	$-9.43\substack{+0.56 \\ -0.97}$	$-9.41\substack{+0.45\\-0.73}$	$-9.13\substack{+0.42\\-0.63}$			
Na+K	< -8.64	< -8.67	< -8.65	<-8.56			
$\log g$ (dex)	$5.44\substack{+0.19\\-0.20}$	$5.47\substack{+0.17 \\ -0.24}$	$5.12\substack{+0.29 \\ -0.33}$	$5.27\substack{+0.30 \\ -0.29}$			
		Derived					
$L_{\rm bol}$	-3.60 ± 0.01	-3.59 ± 0.01	-3.59 ± 0.01	-3.60 ± 0.01			
$T_{\rm eff}$ (K)	$2550.46^{+194.50}_{-170.03}$	$2538.43^{+233.35}_{-152.20}$	$2648.53^{+171.58}_{-177.44}$	$2716.85^{+160.47}_{-154.07}$			
Radius (R_{Iup})	$0.79^{+0.13}_{-0.12}$	$0.80^{+0.13}_{-0.15}$	$0.74^{+0.12}_{-0.09}$	$0.70^{+0.10}_{-0.09}$			
Mass (M_{Jup})	$72.11^{+21.75}_{-24.24}$	$74.09^{+20.23}_{-24.40}$	$28.61^{+21.36}_{-11.56}$	$37.36^{+29.07}_{-16.60}$			
C/O	•••	•••	•••	•••			
$[M/H]^{a}$	$-1.53^{+0.16}_{-0.14}$	$-1.51^{+0.18}_{-0.16}$	$-1.65\substack{+0.20\\-0.19}$	$-1.55^{+0.19}_{-0.18}$			

Notes. Molecular abundances are fractions listed as log values. For unconstrained gases, 1σ confidence is used to determine upper limit. C/O = 1.0 is Solar abundance and C/O = 0.25 is one quarter Solar abundance.

Gonzales et al. (2021)

Grid Models struggle with outliers!

Retrievals can fit much better!

BUT one needs to examine parameters carefully

Problems with Substellar Models

Patience et al. (2012)

Grid models struggle to fit spectra

Gonzales et al. (2021)

Unphysical Radii Mismatch in physical properties

Two Key Take Aways

Forward models and retrievals: 1. Wavelength Coverage 2. Resolution

Retrieval results can't be blindly trusted. You must check if they are physical!

Two Keys things to keep in mind when choosing between

