

Novel Concepts: Photonics for Astronomical Instruments

Aline N. Dinkelaker

Outline

Astrophotonics Introduction

Components and Devices

Astrophotonics for Interferometry

Astrophotonics

Chip and fiber-based photonic devices can be used at various points in astronomical instrumentation

CHARA, Credit: The Observatories of the Carnegie Institution

VLTI, Credit: ESO

MROI, Credit: MRO

JWST, Credit: NASA GSFC/CIL/Adriana Manrique Gutierrez

Motivation: Photonic Building Blocks for Astronomy

Potential for...

- Reduced size, weight & cost of instruments
- Increased environmental stability
- Modularity for incremental extension and updates
- Full instrument integration

Motivation: Photonic Building Blocks for Astronomy

Utilize unique properties of photonics:

- Spatial filtering (typically single-mode)
- Mode conversion
- Guiding (e.g. curved waveguides)
- Coupling / evanescent effects

Manufacturing

- Lithography
- Direct laser writing / ultrafast laser inscription (ULI)
- Glass heating and tapering
- 3D printing
- Etching
- ...

AWG chip: A. Stoll, Hernandez+(2020, SPIE)

Piacentini+(2020)

J. Rypalla (AIP)

<u>400 µт</u>

Anagnos+(2021, Appl. Opt.)

Ross+(2020, Proc. of SPIE Vol. 11451, 114510P)

Manufacturing

Schematic representation of the photolithographic process sequence

Credit: Yilbas, B. et al. (eds Yilbas, B. S., Al-Sharafi, A. & Ali, H.) 45–98 (Elsevier, 2019)

Credit: Stoll+2020

(a)

FSRIGNM

(b)

-

AIP L

62

Manufacturing

Example of the ULI process

ULI modification types for different writing schemes

Image from: Ghafur, O. et al., (eds Stoian, R. & Bonse, J.) 759–786 (Springer International Publishing, Cham, 2023).

MKS FemtoFBG, image credit: A.Mayer (AIP)

Astrophotonic Components

Photonic Lanterns

Wavefront corrections with adaptive optics

MM-SM photonic lantern

See also: Davenport+(2021), for ULI PLs, see e.g. Thomson+(2011)

Photonic Lanterns

Wavefront corrections with adaptive optics

MM-SM photonic lantern

See also: Davenport+(2021), for ULI PLs, see e.g. Thomson+(2011)

Photonic Lanterns

Wavefront corrections with adaptive optics

PLs can also be used for WFS

MM-SM photonic lantern

Arrayed Waveguide Gratings – Spectrograph on a Chip

Chih-Hao Li, SPIE News (2015): https://spie.org/news/5730a-green-astro-comb-to-search-for-earth-like-exoplanets

Silicon-Nitride Chip with micro-ring resonator

Spectra with f_{rep}=28.55 GHz, Expected stability Δ f_{Center} < 250 kHz

Astrophotonics for Interferometry

High angular resolution astronomy: "virtual" large telescope with $\Delta \theta \propto \frac{\lambda}{R}$ Star Van Cittert-Zernike theorem: Relates **coherence** of light to brightness distribution of object Baseline B Telescope 1 Telescope 2 Beam combination $N \cdot (N-1)$ Delay line

Astrophotonics for Interferometry

Complex visibility: visibility and phase from fringe pattern

- Visibility = 1 for point source
- Visibility = 0 for fully resolved source

Measure visibility for different baselines B

Left: "First Surface-resolved Results with the IOTA Imaging Interferometer: Detection of Asymmetries in AGB stars" (Ragland+ 2006). Reconstructed images: top: Martinez+(2021, ApJ) and Monnier+(2007), bottom: Ibrahim+(2023, ApJ)

Altair

Astrophotonics for Interferometry

Image (left): Barjot+(2020, Proc. SPIE 11446, 2022, arxiv)

Free space optics

CLASSIC and CLIMB beam combiners at CHARA

2D (planar) GRAVITY beam combiner

i**nar)** ner

Photonics

3D

Tricoupler

DBC

CHARIOT (2-T, K-band)

Credit: CLASSIC/CLIMB: Ten Brummelaar+(2013), GRAVITY: GRAVITY collaboration (2017), 3D Beam combiner manufactured by Politecnico Milano, Pedretti+ 2018 (arxiv 1809.01260v1), ULI image: Piacentini+(2020), K-band beam combiner: Benoît+2021, tricoupler for GLINT: Martinod+(2021)

Photonic Beam Combiners

ABCD (Cascading) Beam Combiner

Image credits: (Bottom right) Benisty+2009. (Bottom left): Schematic based on Osellame+ 2012. For DBCs, see: Diener+2017, Pedretti+2018, Saviauk+2013, Minardi+2010, Nayak+2021.

Photonic Beam Combiners

Discrete Beam Combiner (DBC)

ABCD (Cascading) Beam Combiner

Images (DBC): Dinkelaker+(2023, AO), Nayak+(2021). See also "Astrophotonic Technologies" (arxiv / SPIE) . Images (ABCD): Pennetier+(2022, SPIE), Blind+(2015)

K-band ULI Beam Combiner (CHARIOT)

- 2 2.5 µm wavelength range (K-band)
- ULI in Infrasil (fabrication by HWU)
- 2-telescope combiner with fiber interface

K-band ULI Beam Combiner (CHARIOT)

- 2 2.5 µm wavelength range (K-band)
- ULI in Infrasil (fabrication by HWU)
- 2-telescope combiner with fiber interface

The CHARA Array and CHARIOT setup. Celebrating on-sky fringes with CHARIOT (May 2nd 2024): N. Anugu, A.V. Mayer, A.N. Dinkelaker, K. Barjot, N. Scott

24 Aline Dinkelaker

Images: top: Siliprandi+ (2024, AO), Benoît+ (2021, JOSA B), bottom: CHARA: The Observatories of the Carnegie Institution, CHARIOT: Alyssa V. Mayer, see also: Mayer+(2024, SPIE), Scott+(2024, AAS), group picture: Gail Schaefer

Leibniz-Institut für Astrophysik Potsdam (AIP)

Nulling Interferometry

Destructive interference of star light (on-axis) by adding a **phase shift**. Goal: high contrast imaging of faint objects (dust, exoplanets) **close to the host star.**

Images taken from: Lagadec T, Norris B, Gross S, et al. "The GLINT South testbed for nulling interferometry with photonics: Design and on-sky results at the Anglo-Australian Telescope." Publications of the Astronomical Society of Australia. 2021;38:e036. doi:10.1017/pasa.2021.29.

More information on nulling: Bracewell RN (1978) "Detecting nonsolar planets by spinning infrared interferometer". Nature 274:780–781. J. R. P. Angel and N. J. Woolf: "An Imaging Nulling Interferometer to Study Extrasolar Planets." 1997, ApJ 475 373, DOI 10.1086/303529. Examples with free-space optics: Keck interferometer, LBT. See also Palomar Fiber Nuller (PFN): Mennesson+ (2011, APJ), Hanot+(2011, APJ), Serabyn+ (2019,MNRS)

25 Aline Dinkelaker

Astrophotonics for Nulling Interferometry

- H-band (~1550 nm) at Subaru (GLINT South at AAT).
- Photonic nuller: ULI in boro-alumino-silicate glass.
- Photonic 3D tricoupler and phase shifter.

Fiber and photonic-lantern based nulling technologies

- Palomar Fiber Nuller (PFN)
- Vortex fiber nulling
- Mode-selective photonic lanterns

See e.g. Mennesson+ (2011, APJ), Serabyn+ (2019,MNRS), Xin+(2022, APJ), Echeverri+(JATIS, 2023)

- L'-band (3.5 4 μm) nulling interferometer for ASGARD at VLTI.
- Photonic nuller: ULI in Gallium-Lanthanum-Sulphide (GLS) glass.

LIFE

٠

- Proposed space nulling interferometer.
- Mid-infrared (MIR), 4 -18.5 µm.
- Photonic beam combiner?
 - \rightarrow Technology development ongoing.

See e.g. Quanz+(2022, A&A), https://life-space-mission.com/

26 Aline Dinkelaker

Images: (GLINT): Norris+ (2020, MNRS), right: Martinod+(2021, AO) and Klinner-Teo+(2022, JATIS). (NOTT): Sanny+(2022, SPIE 12183), see also: G. Garrau+(2024, JATIS). LIFE image from LIFE website

Photonic Beam Combiners

For more details and references, see Labadie (2022, SPIE), see also Dinkelaker (2024, SPIE) Leibniz-Insti

Leibniz-Institut für Astrophysik Potsdam (AIP)

Summary

Chip and fiber-based photonic devices can be used in astronomical instrumentation to achieve high spectral resolution, high angular resolution, and high contrast.

Outlook

Increased integration, e.g.

- Photonic integrated circuits (PIC) with multiple components
- Integration of detectors
- Compact cryo-cooled devices
- Active photonics

Overcoming challenges, e.g.

- Stable coupling and efficient interfacing
- Increase throughput
- Broadband operation
- Extend accessible wavelength range (explore materials and fabrication parameters)
- Deterministic and repeatable fabrication

See also:

- A.N. Dinkelaker: "Astrophotonic Technologies" (2024), Proc. of SPIE 13095 (available on arxiv),
- M.M. Roth, K. Madhav, A. Stoll, D. Bodenmüller, A.N. Dinkelaker, A. Rahman, E. Hernandez, A. Günther, S. Vjesnica, "Astrophotonics: photonic integrated circuits for astronomical instrumentation" (2023), Proc. SPIE 12424,
- S. Minardi, R. J. Harris, and L. Labadie, "Astrophotonics: astronomy and modern optics," The Astronomy and Astrophysics Review, vol. 29, no. 1, p. 6, (2021),
- B. Norris and J. Bland-Hawthorn, "Astrophotonics: The Rise of Integrated Photonics in Astronomy," OPN, vol. 30, no. 5 (2019),
- P. Gatkine et al. "State of the Profession: Astrophotonics," Bulletin of the AAS, vol. 51, no. 7, (2019), https://baas.aas.org/pub/2020n7i285, and many more.

ROADMAP • OPEN ACCESS

2023 Astrophotonics Roadmap: pathways to realizing multifunctional integrated astrophotonic instruments Nemanja Jovanovic^{57,58,1} (D), Pradip Gatkine^{57,58,1} (D), Narsireddy Anugu² (D), Rodrigo Amezcua-Correa³, Ritoban Basu Thakur^{10,50} (10), Charles Beichman⁴, Chad F. Bender⁵ (10), Jean-Philippe Berger⁶ (10), Azzurra Bigioli⁷ (0), Joss Bland-Hawthorn⁸ (0), Guillaume Bourdarot⁹ (0), Charles M Bradford¹⁰ (0), Ronald Broeke¹¹, Julia Bryant⁸ (D), Kevin Bundy¹² (D), Ross Cheriton¹³ (D), Nick Cvetojevic¹⁴ (D), Momen Diab¹⁵, Scott A Diddams¹⁶, Aline N Dinkelaker¹⁷, Jeroen Duis¹⁸ Stephen Eikenberry³ (D), Simon Ellis¹⁹ (D), Akira Endo²⁰ (D), Donald F Figer²¹ (D), Michael P. Fitzgerald²² (D), Itandehui Gris-Sanchez²³ (D), Simon Gross²⁴ (D), Ludovic Grossard²⁵ (D), Olivier Guyon^{5,26,27,28} (D), Sebastiaan Y Haffert⁵ (D), Samuel Halverson¹⁰ (D), Robert J Harris^{29,30}, Jinping He^{31,32} (D), Tobias Herr³³ (D), Philipp Hottinger³⁴ (D), Elsa Huby³⁵, Michael Ireland³⁶ (D), Rebecca Jenson-Clem¹², Jeffrey Jewell¹⁰, Laurent Jocou³⁷ (b), Stefan Kraus³⁸ (b), Lucas Labadie³⁹ (b), Sylvestre Lacour³⁵ (b), Romain Laugier⁷ (1), Katarzyna Ławniczuk¹¹, Jonathan Lin²² (1), Stephanie Leifer⁴⁰ (1), Sergio Leon-Saval⁵⁶ (D), Guillermo Martin³⁷ (D), Frantz Martinache¹⁴, Marc-Antoine Martinod⁷ (D) Benjamin A Mazin⁴¹ (10), Stefano Minardi⁴², John D Monnier⁴³ (10), Reinan Moreira⁴⁴, Denis Mourard¹⁴ (10), Abani Shankar Navak⁴⁵ (D), Barnaby Norris⁸, Ewelina Obrzud⁴⁶ (D), Karine Perraut³⁷ (D), François Reynaud²⁵ (D), Steph Sallum⁴⁷ (D), David Schiminovich⁴⁸ (D), Christian Schwab⁴⁹ (D), Eugene Serbayn¹⁰, Sherif Soliman¹⁸, Andreas Stoll¹⁷, Liang Tang^{31,32}, Peter Tuthill⁸ Kerry Vahala⁴⁰, Gautam Vasisht¹⁰, Sylvain Veilleux⁵¹, Alexander B Walter¹⁰, Edward J Wollack⁵² (D), Yinzi Xin¹ (D), Zongyin Yang⁵³ (D), Stephanos Yerolatsitis³ (D), Yang Zhang⁵⁴ (D) and Chang-Ling Zou⁵⁵ D - Hide full author list Published 30 October 2023 • © 2023 The Author(s), Published by IOP Publishing Ltd Journal of Physics: Photonics, Volume 5, Number 4 Citation Nemanja Jovanovic et al 2023 J. Phys. Photonics 5 042501 DOI 10.1088/2515-7647/ace869

Astrophotonics Group at AIP in Potsdam, Germany

Acknowledgements:

Dr. Kalaga Madhav (Section Head): kmadhav@aip.de

Dr. Aline Dinkelaker: adinkelaker@aip.de

www.aip.de

Thank you

