Post-processing for High-Contrast Imaging: ground-based instruments

Faustine Cantalloube

Institut de Planétologie et d'Astrophysique de Grenoble [faustine.cantalloube@cnrs.fr](mailto:faustine.cantalloube@univ-grenoble-alpes.fr)

Wednesday 11.00am J.-B. Ruffio

Direct imaging with ground-based telescopes

Friday 11.00am Steph Sallum

Friday 8.30am Guillaume Bourdarot

 to their bright host star Ground based telescopes (8-m class) Near - thermal infrared

High-dynamic

Direct imaging with ground-based telescopes

High-contrast imaging

High Angular resolution few milliarcseconds & High Contrast more than 10-6

High-contrast imaging

Bright starlight residuals !

 \blacktriangleright Light-rays interfere in the focal plane

-
-
-
-

Summary of our task

Thursday 11am Julien Milli

Tailored image processing techniques to carve out the residual starlight -> 10⁻⁶ contrast

What do we want / need:

- Detection: discriminate H_0 from H_1 + confidence level
- Characterisation: astrometry & photometry + uncertainties
- Detection limit: algorithm performance (astro-centered)
- Comparison: apply different algorithms (algo-centered)
	- Maximizing True positives, minimizing False negatives
- For point source (substellar companions) & extended source (circumstellar disks)

Differential imaging 101

Find a different behaviour between (1) the astrophysical signals

■ Exploit this diversity to recover the signal !

and (2) the starlight residuals

This can be optimized

Detection by thresholding

This step is critical !!!

Whitens the residuals !

Differential imaging 101

Need a specific observing strategy & calibration procedure ➡ Provide with various diversities

Focus on ADI-based techniques !

• Reference Differential Imaging: *Mawet et al., 2009, Rameau et al. 2012* • multi-Reference Differential Imaging: *Xuan et al. 2018, Bohn et al. 2019,* • Polarimetric Differential Imaging: *Kuhn et al. 2001* • Spectral Differential Imaging: *Racine et al. 1999, Sparks and Ford 2002* • Coherence Differential Imaging: *Baudoz et al. 2005*

• Binary Differential Imaging: *Rodigas et al., 2015 Ruane et al. 2019* • Angular Differential Imaging: *Marois 2006, Davies 1980* …

Angular Differential Imaging

ADI is a technique, not an observing mode or data set type

Observing time

Image field Field of view rotates w/ parallactic angles

© F. Cantalloube - ESO/SPHERE

For an alt-az mount telescope Disable the field derotator

Observing time

Pupil field Optics / wavefront remain in the same direction

Pupil tracking mode: It brings angular diversity

1.Estimating the star image The basic approach

The closest frames in time are the most correlated while not self-subtracting the signal

Pairwise subtraction:

The optimal $\Delta \alpha$ is **0.5 lambda/D If comes with various flavours: smart-ADI**, annular-ADI And variations: Image Rotation Subtraction *Dou et al., 2015*

The median represents the 'typical' image while the moving signal is not taken into account

remporal frame (t1)
median -median

Temporal median:

Marois et al., 2006

=

frame (t1)

-

frame (t2)

…

Temporal

1. Estimating the star image The classic approach

Principal Component Analysis (PCA): Linear combination of the images of the cube decomposed over orthogonal basis (eigen-images)

Soummer et al., 2012 Amara & Quanz 2012

And also… smart-PCA, *Absil et al., 2013* LLGS, *Gonzalez et al., 2016* AMAT*, Daglaya et al., subm.* NMF, *Ren et al., 2018* Space-Time KLIP, *Lewis et al., 2023*

1. Estimating the star image Half Sibling Regression

Gebhard et al., 2022

Exclusion region

1. Estimating the star image Signal Safe Speckle Subtraction (4S)

Bonse et al., 2024

Explainable Machine Learning **Auto-Grad against signal loss**

AF Lep b (2011)

2. Residuals after subtraction

Also called 'subtraction residuals', 'differential imaging' residuals, 'post-processing residuals'

The noise distribution of the residuals is sub-exponential (and not Gaussian) > hence the high number of false positives !

2. Residuals after subtraction Beyond the 5 - σ contrast curve for non-Gaussian noise

 $SNR = T_{obs} = 2.28$

It is essential to have a realistic estimate of the distribution of the residual noise Confidence level

Bonse et al., 2022

Jensen-Clem et al., 2017

3. Combining the images

There is no formal proof that one is better than the other…

Mean combination Median combination

Noise weighted combination

Bottom et al., 2017

Optimal weight
$$
F_{opt} = \frac{1}{\sum_{i} \frac{1}{\sigma_i^2}} \sum_{i} \frac{F_i}{\sigma_i^2}
$$

3. Combining the images

Accounting for small-sample statistics

Statistical testing

Mawet et al., 2014

SNAP approach

Thompson & Marois, 2021

Optimisation of the S/N ratio

Golomb et al., 2020

Multinest approach

Nested sampling to compute the evidence for H0 and H1.

> Balance noise reduction vs. self-subtraction

STIM map

Pairet et al., 2019

$$
\text{STIM} = \frac{\hat{\mu}_g}{\hat{\sigma}_g}
$$

Normalization factors to optimize SNR

Empirical normalisation

Similar to adapting the threshold

Regime Switching Model (RSM):

Dahlqvist et al., 2020, 2021ab, 2022

Build a time series in residual cubes: Probability of H₁ at *t*, knowing state at *t*-1

3. Combining the images

STIM Largest Intensity Mask (SLIMask):

Pairet et al., 2021 (PhD thesis)

Mask to apply on STIM-maps: Average location of the largest entries for a range of ranks

4. Detection map Supervised binary classification

Supervised exOplanet detection via Direct Imaging with deep Neural Networks (SODINN)

Binary Classifier after a PCA subtraction

Gomez Gonzalez et al., 2018

Class '*Noise*'

Cantero Mitijans et al., 2023

Noise Adaptative SODDIN (NA-SODINN)

Add SNR curves to support the training process

Characterization of the point-sources

direct SNR map estimate $SNR = f_p/\sigma(f_p)$

Forward Modeling

(inclusing assumption on noise distribution)

Negative Fake Companion injection (NEGFC) + minimization

Forward Modeling of the planetary signal Basic concept | Also called "inverse problem" or "Match Filtering" approach

$$
L(r_0, a) \propto exp \left(-\frac{1}{2} \left\| \frac{\Delta(r, k) - a p(r, k; r_0)}{\sigma_{\Delta}(r)} \right\| \right)
$$

Cantalloube et al., 2015

Mugnier et al., 2009

ANDROMEDA

Forward Modeling of the planetary signal Better subtraction ?

Image at t_1

Linear Combination of first PCs

FMMF

Pueyo et al., 2016

Ruffio et al., 2017

$$
L(r_0, a) \propto exp \left(-\frac{1}{2} \left\| \frac{\Delta(r, k) - a p(r, k; r_0)}{\sigma_{\Delta}(r)} \right\| \right)
$$

Forward Modeling of the planetary signal Better differential residuals model ?

r-ANDROMEDA

Cantalloube et al., subm. in 2019

$$
L(r_0, a) \propto exp \left(-\left\|\frac{\Delta(r, k) - a \, p(r, k; r_0)}{b_\Delta(r)}\right\|_1\right)
$$

Forward Modeling of the planetary signal Not even subtraction ?

Maximum likelihood estimation with multivariate Gaussian noise:

$$
\text{p}_f(\{\bm{f}_{\lfloor \phi_t \rceil,t}\}_{t=1:T})=\prod_{t=1}^T\mathcal{N}\big(\bm{f}_{\lfloor \phi_t \rceil,t}\,\big|\,\bm{m}_{\lfloor \phi_t \rceil}
$$

Empirical mean and covariance on temporal patches

 $_{t]},\mathbf{C}_{\left\lfloor \phi_{t}\right\rceil }\right)$

H₁: model planet signature h off-axis PSF

H₀: model of the background f Multivariate Gaussian

PAtch COvariance (PACO)

Flasseur et al., 2018

Forward Modeling Temporal Reference Analysis of Planets (TRAP)

Samland et al., 2021

Temporal PCA model of the starlight + Forward Modeling

Penguin interlude

That's a lot !

 $\sqrt{1}$

Exoplanet Imaging Data Challenge a community-wide effort

- Started in 2019 !
- First phase launched in Sept. 2019 Workshop HCI post-processing, Berlin, Germany
- First phase closed in Oct. 2020
- Publication SPIE 2020
- Second phase (characterization) launched Apr. 2022 Third phase (disk imaging) for ~2025 Fourth phase (high resolution spectroscopy) for ~2026 Keck/NIRC2 Keck/NIRC2 LBT/LMIRCam

https://exoplanet-imaging-challenge.github.io/

Post-processing techniques performance assessement

Gomez Gonzalez et al., 2016

Detection map + threshold + posterior (spectro)-photometry

• Counting True and False positives

SADI-based detection

- True positive rate: $TPR = TP/(TP + FN)$
- False discovery rate: $FDR = FP / (FP + TP)$
- False positive rate: $FPR = FP/(FP+TN)$

At the submitted threshold, we compute:

• F1-score = $2 \text{ TP } / (2 \text{ TP} + \text{FP} + \text{FN})$

SADI-based characterization: Data type

•(spectro)-photometry

•Astrometry

Multispectral image cube

1. Astrometry of point sources Thursday 9.15am Sarah Blunt

X

Final "ranking"

EIDC website

Penguin interlude #2

Circumstellar extended structures: Protoplanetary disks and debris disks

Garuffi et al., 2017

Total intensity image in IR:

- Face-on circular disks
- Structures on edge-on disks
- Spiral structure
- Shadows, dips, gaps…
- •Disentangling planets-disks

Towards EIDC Phase 3 !

Classic approaches

Mask the signal Analyse the ADI-made distortion

Milli et al., 2012 Ren et al., 2020a

Stapper & Ginsky, 2022

Breaking down optimisation regions enforcing positivity and sparcity

Model Classical

NMF

KLIP

75°

Iterate the ADI subtraction to minimize self-subtraction

Pairet et al., 2018

Image reconstruction approaches

MAYONNAISE

Pairet et al., 2020

Morphological Component Analysis: -Disk in shearlet space -Planet in direct space

MUSTARD

 \blacksquare PACO framework to estimate noise Iterates on the disk estimation

Juillard et al., 2023

Mask the ambiguous region due to rotation (not known)

REXPACO

Flasseur et al., 2021

Observing strategies for RDI: Using another reference star

To go further ! Building the reference PSF multi-Reference RDI: Using a library of images as a database Using Structure Similarity Index | Ruane et al., 2019 Using Data Imputation with NMF | Ren et al., 2018 ConStruct (Auto-encoders based) *Wolf et al., 2023* Poster #8 Cao Fangyi Data Imputation | Poster #27 Sandrine Juillard with semi-supervised CNN IPCA: Combine ADI + RDI *Juillard et al., 2024*

Bohn et al. 2020a

Wahhaj et al. 2021

Snapshot of similar targets

Star-hopping observations

 ∇

Poster #32 Pengyu Liu

Poster #47 Richelle Cvan Capelleveen

To go further ! Building the reference PSF

Estimation with an instrumental model Foster #18 Rodrigo Ferrer-Chavez

Pipelines

PyKLIP

• Post-processing algo + detection maps KLIP, mRDI + *planetevidence* (multinest)

- Complete toolbox FM-based
	- [https://pyklip.readthedocs.io](https://pyklip.readthedocs.io/en/latest/)
- Ready-made configuration GPI, CHARIS, SPHERE, NIRC2, VisAO
- Characterization FM (disk incl.)

- Preprocessing tools
- Library of post-processing algo PCA, LOCI, ANDROMEDA, PACO
- Characterization tools NEGFC, MCMC…

[https://vip.readthedocs.io](https://vip.readthedocs.io/en/latest/) Library of algorithms !

- w/ pre-configuration files SPHERE, NaCo
- Post-processing algo PCA mainly, in-house PACO…
- Characterization tools NEGFC, MCMC…
	- Large data sample management !
	- [https://pynpoint.readthedocs.io](https://pynpoint.readthedocs.io/en/latest/)
- You can use all these beautiful tools ! And also, CHARIS, GRAPHICS, SPHERE-DC, Data Cruncher etc.

Advanced post-processing techniques are available and documented ! Use several concept to achieve better astrophysical input

- •Understanding the limitations of HCI: temporal stability is key
- •Relies on specific observing strategies and calibration
- Characterising the starlight residuals and differential residuals distribution
- •All algorithm provide different outputs requiring different interpretation • Assessing the performance is not obvious at all
-
- Data challenges are a great tool for homogeneous comparison

Summary of key points: post-processing is essential to gain > 1mag

faustine.cantalloube@cnrs.fr

EIDC website

