Fourier Optics Theory and Fundemantals

Iva Laginja

Sagan Summer Workshop 2024

22 July 2024, Caltech, Pasadena

What is light and how do we describe it?

Light as a wave and E-field, Fourier optics and optical systems

What are the goals?

Understand and describe... Physically manipulate... Numerically imitate...

...the **propagation** of **light** from point A to point B.

What are the goals?

Understand and describe... Physically manipulate... Numerically imitate...

...the **propagation** of **light** from point A to point B.

Image credit: Getty images

What are the goals?

Understand and describe... Physically manipulate...

Numerically imitate...

...the **propagation** of **light** from point A to point B.

5

What are the goals? \rightarrow Optics in HCI

Understand and describe...

Physically manipulate...

Numerically imitate...

Figure courtesy of A. Sivaramakrishnan

...the **propagation** of **light** from point A to point B...

...through a **high-contrast imaging (HCI)** instrument.

Geometric optics vs. wave optics

JWST optical design. Credit: Gardner et al., 2006.

Geometric optics vs. wave optics

JWST optical design. Credit: Gardner et al., 2006.

Light behaves like a wave (and also like a particle)

Light is an electromagnetic (EM) wave described by Maxwell's equations \rightarrow **vector theory** with three components for each field: E_x, E_y, E_z and M_x, M_y, M_z

Light behaves like a wave (and also like a particle)

*Light propagates in a dielectric medium that is linear, isotropic, homogeneous and nondispersive. However, even in an HCI instrument, not all of these are always true. Light is an electromagnetic (EM) wave described by Maxwell's equations \rightarrow **vector theory** with three components for each field: E_x, E_y, E_z and M_x, M_y, M_z

Under conditions that apply to an HCI instrument*, this can be approximated by a scalar theory, where all EM field components follow the same scalar wave equation \rightarrow light can be represented as a scalar electric field:

 $E = E(\vec{r})$

Light is an E-field with phase and amplitude

(x,y) $E(x,y) = A(x,y)e^{i\phi}$ **E-field** Phase Amplitude /wavefront /wave field

Light propagates in wavefronts

This figure is reprinted/reused by permission from ©Iowa State University Center for Nondestructive Evaluation (CNDE).

 $E(x, y) = A(x, y)e^{i\phi(x, y)}$

Light propagates in wavefronts

 $E(x, y) = A(x, y)e^{i\phi(x, y)}$

Point source

Light is a scalar field that propagates

$$E(x, y, z, t) = \Re \left\{ A(x, y, z) e^{-i\phi(x, y, z)} e^{-i2\pi\nu t} \right\}$$

Propagation to arbitrary positions in space

Point source

Fraunhofer integral constrains propagation to far-field

$$E(x,y) \propto \iint_P A(x',y') e^{i\phi} e^{-i\frac{k}{z}(x'x+y'y)} dx' dy'$$

When object sizes in x' and y' are negligible with respect to propagation distance z.

Identify Fourier transform in Fraunhofer integral

$$E(x,y) \propto \iint_{P} A(x',y')e^{i\phi}e^{-i\frac{k}{z}(x'x+y'y)}dx'dy'$$

2D Fourier transform:
$$\iint_{P} f(x,y)e^{-i\frac{k}{z}(x'x+y'y)}dx'dy'$$

Function to transform

22 July 2024

Identify Fourier transform in Fraunhofer integral

$$E(x,y) \propto \iint_P A(x',y') e^{i\phi} e^{-i\frac{k}{z}(x'x+y'y)} dx' dy'$$

2D Fourier transform:

$$\iint f(x,y)e^{-i\frac{k}{z}(x'x+y'y)}dx'dy'$$

$$E(x, y) = \mathcal{F}\{E(x', y')\}$$

An optical system manipulates wavefronts

Light propagates distance z

Light propagates distance z

We identify relevant optical planes

 $I = |E(x,y)|^2 \label{eq:Intensity}$ Intensity

Each plane holds a relevant wavefront

Fourier optics deals with pupil and focal planes

Simplest optical system: simple telescope (e.g., Newtonian telescope)

Simplest optical system: simple telescope (e.g., Newtonian telescope)

Pupil plane (PP) Focal plane (FP)

Simplest optical system: simple telescope (e.g., Ne telescope

(e.g., Newtonian telescope)

Pupil plane (PP) Focal plane (FP)

 $E_1 = A_1 e^{i\phi_1}$

 $E_2 = A_2 e^{\imath \phi_2}$

Simplest optical system: simple telescope (e.g., Newtonian telescope)

Pupil plane

Pupil plane (PP) Focal plane (FP)

 $E_1 = A_1 e^{i\phi_1}$

Simplest optical system: simple telescope (e.g., Newtonian telescope)

Pupil plane

 $E_1 = A_1 e^{\imath \phi_1}$

 $E_2 = A_2 e^{\imath \phi_2}$

Iva Laginja, SSW 2024

Simplest optical system: simple telescope (e.g., Newtonian telescope) (e.g., Newtonian telescope)

Pupil plane

$E_2 = A_2 e^{i\phi_2}$

Simplest optical system: simple telescope (e.g., Newtonian telescope)

Pupil plane

 $E_1 = A_1 e^{i\phi_1}$

 $E_2 = A_2 e^{i\phi_2}$

Simplest optical system: one Fourier transform

Pupil plane

Focal plane

Simplest optical system: one Fourier transform

HCI instruments are optical systems and they propagate wavefronts from one optical plane to the next.

The relationship between pupil and focal planes is a Fourier transform.

 \rightarrow Pupil planes and focal planes are transformations of each other.

Diffraction, properties of the Fourier transform, resolution

Diffraction patterns, units, angular resoluton, wavelength dependence

Diffractive optics and **Fourier** optics

Iva Laginja, SSW 2024

- A simple telescope pupil imposes a circular edge that defines the collecting area
- Result is an Airy function in the focal plane

Reminder: $I = |E|^2$

 ρ ...radial distance from optical axis

 J_1 ... Bessel function of first kind

Pupil-plane vs. focal-plane units

- Focal plane is expressed in terms of **spatial frequencies**
- physical scales (or angular scales) are inverse of each other
- The larger the pupil the smaller the core of the PSF

Angle change in pupil \rightarrow shift in focal plane

22 July 2024

 E_1

 E_2

10

\rightarrow tip-tilt/jitter ! **Pupil plane phase** Focal plane Log(I) rad 10 0.4 - 2 5 0.2 - 1 0.0 0 Simple imager/telescope 0 -1PP -0.2 FP -5 -0.4-10 --0.4-0.20.0 0.2 0.4 -10 -5 5 0 Separation (λ/D)

Angle change in pupil \rightarrow shift in focal plane

22 July 2024

Iva Laginja, SSW 2024

Angle change in pupil \rightarrow shift in focal plane

Companions and angular resolution

Simple imager/telescope

Companions and angular resolution

Simple imager/telescope

Companions and angular resolution

Iva Laginja, SSW 2024

Rayleigh criterion for angular resolution

-- Star -- Planet - Sum

Faint companions and angular resolution

Faint companions and angular resolution

10⁻² planet at 4 λ/D

10⁻² planet at 4 λ/D 10⁻² planet at $2 \lambda/D$ 10⁰ 10⁰ Star 10-2 Normalized intensity 10^{-2} 10^{-4} 10^{-4} 10^{-6} 10^{-6} 10⁻⁸ 10⁻⁸ 10^{-10} 10^{-10} ²⁰⁰ 0 1.4 100 300 **10** -10 0 5 -5 4 10 -10 Separation (λ /D) Separation (λ /D) 22 July 2024 56 Iva Laginja, SSW 2024

10⁻² planet at 4 λ /D

Planet 10 10 **Planet** 5 5 Separation (λ/D) Separation (ALP) 0 0 Star Star -5 -5 -10^{-10} -10-5 -105 10 -10-5 5 10 O 0 Separation (λ /D) Separation (λ/D)

Iva Laginja, SSW 2024

10⁻² planet at $2 \lambda/D$

- Planets with worse flux ratio (=fainter planets) even harder to image in stellar light
- The closer the planet to optical axis, the harder to image

- Planets with worse flux ratio (=fainter planets) even harder to image in stellar light
- The closer the planet to optical axis, the harder to image
- Starlight suppression techniques needed
 coronagraphy (see next talk)

Optical aberrations

Amplitude and phase aberrations, sources of aberrations, aberrations by spatial frequency content

Amplitude

pupil

Perfect wavefront

Pupil plane

0.4

 $E_{pup} = Ae^{i\phi} = A$

-0.4

r 1.0

-0.8

-0.6

- 0.4

0.2

0.0

Phase

Zero

Focal plane

"Perfect" PSF

Aberrations can occur in amplitude or phase

22 July 2024

Amplitude aberrations

Log Intensity Phase Anything that changes pupil transmission: Uneven reflectivity on mirror Unequal reflectivity between segments • Missing segments

Separation (λ /D)

 $E_{pup} = Ae^{\alpha + \imath \phi}$

Phase ripples across pupil

No aberration

Linear combinations of sine waves in pupil

Any aberration can be expressed as linear combination of sine waves

- Break down aberrations by their spatial frequency
- General division due to occurrence of aberrations in low, mid and high spatial frequencies

Any aberration can be expressed as linear combination of sine waves

- Break down aberrations by their spatial frequency
- General division due to occurrence of aberrations in low, mid and high spatial frequencies

Is it a planet or is it a speckle?
Any aberration can be expressed as linear combination of sine waves

Laginja & Pourcelot 2023

Any aberration can be expressed as linear combination of sine waves

Laginja & Pourcelot 2023

It's not as easy as letting Pacman clean up... → need wavefront sensing and control (WFS&C) (see talk by Becky Jensen-Clem) → need post processing (see talk by Faustine Cantalloube)

Is it a planet or is it a speckle?

No aberration

Astigmatism

- Aberration sources:
 - Thermal settling of telescope
 - Misalignment of optics
 - Fast tip-tilt jitter
- Results in focal-plane contamination
 close to optical axis → close to star
- Low-order aberrations contaminate the prime area of interest for detection of close-in exoplanets
 - → motivation for **low-order WFS&C**

Phase screens have energy in a range of spatial frequencies

Phase screens have energy in a range of spatial frequencies

Summary

- We need to use **wave optics** to describe **diffraction** in a telescope
- We can model light as a scalar field and describe its propagation between pupil and focal planes with Fourier transforms
- The telescope pupil defines the ideal diffraction pattern at the diffraction limit
- Faint planets "drown" in the wings of the PSF, especially at small angular separations
- A planet at a certain **angular separation** manifests as a **shifted PSF**
- Aberrations contaminate the focal-plane images and make planets even harder to detect