Detecting and Characterizing Exoplanetary Systems using Astrometry with the Nancy Grace Roman Space Telescope

> 2022 Sagan Exoplanet Summer Hybrid Workshop Exoplanet Science in the Gaia Era July 29, 2022

B. Scott Gaudi The Ohio State University

National Aeronautics and Space Administration

Roman Observatory and Instrument Properties, and Expected Astrometric Performance

Summary of Roman Properties

Properties	Roman
Eff. Aperture	2.28m
FOV	0.281 deg ²
Wavelengths	~0.5-2 μm (WFI)
FWHM@1µm	0.10″
Pixel Size	0.11"
Launch/ Lifetime	202/5 years
Orbit	L2

Wide-Field Instrument (WFI)

- ~0.5–2.0 micron bandpass
- 0.281 sq. deg. FoV (~100x HST ACS FoV)
- 18 H4RG detectors (288 Mpixels)
- 7 filter imaging, grism and prism spectroscopy

Coronagraph Instrument (CGI)

- Visible (545-865nm) high-contrast imager
- Polarimeter and spectrograph
- 3 types of coronagraph masks

Surveys and Observations

- HLS: Imaging & spectroscopy over 1000's sq deg
- SNe & μ L: Repeated monitoring of smaller areas
- Coronagraph: tech demo observations

Wide Field Imaging Filters and Dispersers

- Seven ~standard imaging filters
- Wide F146 filter used for the μL survey (~1-2 μm)
- Grism $(1.0 1.93 \ \mu m, R \sim 600)$
- Prism (0.75 –1.80 μm, R~100)

~100 Times the Field-of-View Of Hubble

Photometric and Astrometric Precision

- For a F146_{AB}~21.15 star, σ_{phot} ~1% per ~50s exposure
- · σ_{ast} ~FWHM/SNR
 - ~FWHM× σ_{phot} ~0.1" ×0.01
 - \sim 1 mas per exposure
- In principle, can be improved using \sqrt{N} , drift scanning, diffraction spikes
- Generally requires exquisite detector characterization for $\sigma_{ast} \ll mas$

2022 Sagan Exoplanet Summer Workshop

Expected Astrometric Performance

Context	Estimated performance
Single-exposure precision	0.01 px; 1.1 mas
Typical guest-observer program (100 exposures of one field)	0.1 mas
Absolute astrometry accuracy	0.1 mas
Relative proper motions derived from High-Latitude Survey	25 μ as yr ⁻¹
Relative astrometry, Exoplanet MicroLensing Survey (per image)	1 mas
Relative astrometry, Exoplanet MicroLensing Survey (full survey)	$3-10 \ \mu as$
Spatial scanning, single scan	10 μ as
Spatial scanning, multiple exposures	$1 \ \mu as$
Centering on diffraction spikes	10 μ as

Sanderson et al. 2019

2022 Sagan Exoplanet Summer Workshop

7

Exoplanet Applications of Precise Astrometry with Roman

The Roman Galactic Bulge Time Doman Survey (RGBTDS)

Detection of Extrasolar Planets with Microlensing

Unique Sensitivity of Microlensing to Exoplanetary Systems

- Planets beyond the snow line.
 - Most sensitive at $\sim \text{few} \times a_{\text{snow}}$
- Very low-mass planets.
 - >10% Mars.
- Long-period and free-floating planets.
 - 0.5 AU ∞

- Wide range of host masses.
 - BD, M<M $_{Sun}$, remnants
 - Typically 0.5 M_{Sun}
- Planets throughout the Galaxy.
 - 1-8 kpc
- Solar System analogs
- Moons of giant and terrestrial planets

A Microlensing Exoplanet Survey with Roman

Simulation software written by:

Matthew Penny (LSU)

Roman will complete the statistical census of exoplanets

Also, ~10⁵ Transiting Planets!

Expected yield of transiting planets orbiting dwarfs with W149_{AB}<21

Montet et al. 2017 studied the prospects for detecting transiting planets with Roman's GBTDS:

- Roman will detect $\sim 10^5$ transiting planets with radii down to $\sim 2R_{\oplus}$.
- Several thousand can be confirmed by the detection of their secondary eclipses.
- Some systems will have measured transiting timing variations.

How Roman's precise astrometry will help exoplanets

- Roman will measure parallaxes to the source stars of a planetary microlensing events, helping to constrain the parameters of the host stars and planets.
- Roman will measure the astrometric microlensing deflection that accompanies photometric microlensing events, enabling the mass measurement of host stars and planets.
- Roman will measure parallaxes to the host stars of the transiting planets detected during the RGBTDS, thereby helping to eliminate false positives and constrain the system properties.

Astrometric Detection of Exoplanets with Roman

Astrometric Detection of Exoplanets

- This approximate $^{S}/_{N}$ assumes N uniformsampled 2D astrometric measurements each with precision σ along each axis,.
- The astrometric signal of planets with periods longer than the duration of the survey T are very hard to detect
- They appear as linear 'trends', which cannot be distinguished from the host star proper motion.

$$S_{N} = \begin{cases} \sqrt{N}F(i, e, \omega) \frac{\alpha_{0}}{\sigma} & \text{if } P \leq T \\ 0 & \text{if } P \geq T \end{cases}$$

here $\alpha_{0} \equiv \left(\frac{a}{d}\right) \left(\frac{m_{p}}{M_{*}}\right)$ is the astrometric signal for a circular, face-on orbit, and

$$F(i, e, \omega) = \sqrt{\frac{1}{2}(1 + \cos^2 i) \left[1 - e^2 \left[3 - \left(\frac{2}{1 + \cos^2 i} - 1\right)\right] \cos^2 \omega}\right]$$

accounts for the effects of inclination i, eccentricity e, and longitude of periastron ω , and is generally of order unity.

2022 Sagan Exoplanet Summer Workshop

W

Astrometric Detection of Exoplanets

$$S/_{\rm N} \simeq 20F \left(\frac{N}{50}\right)^{1/2} \left(\frac{\sigma}{10\mu {\rm as}}\right) \left(\frac{P}{10{\rm yr}}\right)^{2/3} \left(\frac{m_p}{10M_{\oplus}}\right) \left(\frac{M_*}{M_{\odot}}\right)^{-2/3} {\rm if } P \lesssim T$$

- A planet with P = 10yr and $m_p = 10 M_{\oplus}$ can be detected with $S_N \simeq 20 \ (\sigma_{m_p} \sim 5\%)$ with N=50 (2D) astrometric measurements each with precision $\sigma = 10 \ \mu$ as along each axis.
- Highly simplified treatment but provides a rough sense of the number and quality of the astrometric measurements needed.

High-precision Astrometry with Roman – Centroiding Diffraction Spikes

High-precision Astrometry with Roman – Centroiding Diffraction Spikes

- Can achieve $\sigma \sim 10 \mu as$ astrometric precision (1D) in a single 100s exposure of a $R_{AB} \sim 6$ star.
- This corresponds to 10⁻⁴ of a pixel → need exquisite control of systematics.

High-precision Astrometry with Roman – Spatial Scanning

- Spatial Scanning distributes the flux over many pixels, increasing the signal and suppressing systematics
- Parallaxes accurate to ~40 μas have been measured with HST on V~10 stars (Reiss et al. 2015, Casertano et al. 2016)
- Expect to better with Roman because of larger detector and non-destructive reads
- Brighter stars, up to $H_{AB} \sim 4$
- Expect a measurement precision (1D) of ~10
 μas with Roman (Sanderson et al. 2019)

High-precision Astrometry with Roman – Combining with Gaia to Increase the Baseline

- Gaia is predicted to have a final parallax precision of $\sigma_{\varpi} \sim 10$ μ as for $G \leq 13$ stars.
- This roughly corresponds to $S/N \sim \frac{\alpha_0}{\sigma_{\varpi}}$,

Sr

$$S/_{\rm N} \sim \left(\frac{P}{10 {\rm yr}}\right)^{2/3} \left(\frac{m_p}{10 M_{\oplus}}\right) \left(\frac{M_*}{M_{\odot}}\right)^{-2/3}$$

2022 Sagan Exoplanet Summer Workshop

Roman's sensitivity to exoplanets orbiting nearby stars

- Roman will be sensitive to super-Earths in the habitable zones of a handful of nearby stars
- The best targets are nearby M dwarfs
- A survey of the 10 best targets requires ~10 days of observing time

Summary

- Roman will have a single-measurement astrometric precision of ~1 mas using traditional imaging
- With spatial scanning or by centroiding diffraction spikes, it may be possible to achieve precisions of $\sim 10 \ \mu as$.
- Precise astrometry can be used to measure the parallaxes of the source stars and the masses of the host stars of the ~1000 microlensing events detected in the Roman Galactic Bulge Time Domain survey
- A dedicated 10-day survey using spatial scanning or by centroiding diffraction spikes could detect rocky super Earths in the habitable zones of roughly a dozen nearby stars

