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THE SEARCH FOR LIFE

Finding Earth-like planets and life would be a momentous achievement
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THE SEARCH FOR LIFE

Finding Earth-like planets and life would be a momentous achievement
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Two paths towards habitable exoplanets ...

1. Space-based direct spectroscopy for Sun-like stars

2. Ground-based direct spectroscopy for low-mass stars
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Task Force Decadal Roadmap Study Decadal



DIRECT OBSERVATIONS OF EXOEARTHS

Light reflected or emitted by the planet,
with little or no starlight mixed in

o
w

Planet-star flux ratio x 10~10

0.5 1.0
Wavelength [pum]

Figure 3-15, LUVOIR Final Report

¢ 1-1, LUVOIR Final Report | 4




WHY DIRECT SPECTROSCOPY?

Sun-like Stars

" smesphere _
Large star
atmosphere

Extremely small signals in transit spectroscopy
Need direct spectroscopy

-

Required ultra-high contrast too challenging from ground

(even using ELTs, future extreme adaptive optics, & high
dispersion technique)

Need space-based direct spectroscopy



WHY DIRECT SPECTROSCOPY?

Sun-like Stars

AR

Extremely small signals in transit spectroscopy

|

Need direct spectroscopy

Low-mass Stars

Small planet & small
atmosphere

Small planet & small
atmosphere

Small possible signals in transit spectroscopy.
But ... sensitive to planet's upper atmosphere

Some important molecules concentrated in Earth's lower
atmosphere (e.g., water vapor)

Required ultra-high contrast too challenging from ground Need direct spectroscopy to probe lower atmosphere

(even using ELTs, future extreme adaptive optics, & high
dispersion technique)

Need space-based direct spectroscopy

Lower contrast requirements

Try ground-based direct spectroscopy
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THE ONCE AND FUTURE GREAT OBSERVATORIES

Hubble
', UV/Optical/NIR
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The First Great Observatories
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THE ONCE AND FUTURE GREAT OBSERVATORIES

The Future Great Observatories

* HabEx LUVOIR lynx  Origins
UV/Optical/NIR UV/Optical/NIR X-ray Infrared

7\

Astro2020 Decadal Survey recommended NASA work towards a new fleet of
multi-wavelength Great Observatories
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FIRST NEW GREAT OBSERVATORY

uv / Optical / Infrared space teléscope with ~ 6-m inscribed diameter
To search for life on exoplanets and enable transformative astropki/sics
Blending of the LUVOIR and HabEx mission conce‘pts (IROUV? LUVEXx?)

Start maturing Cofhcépt ASAP. Launch in early 2040s

LUVOIR-B . Habix
8-m aperture . 4-maperture .
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PLANET YIELDS FROM LUVOIR & HABEX
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PLANET YIELDS FROM LUVOIR & HABEX R

| Habitable
planet Rocky Super- Sub-  Neptune-  Jupiter-

candidates planets  Earths  Neptunes  sized sized

A
LUVEx goal from Astro2020

Search for biosignatures from ~ 25 potentially habitable exoplanets
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¥ HOC

ILUWOIRB 149
HabEx

# of Detected PI:
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THREE INHABITED PLANETS: THE EARTH THROUGH TIME
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THREE INHABITED PLANETS: THE EARTH THROUGH TIME =~ < ©)
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THREE INHABITED PLANETS: THE EARTH THROUGH TIME

4.0

3.5

3.0

2.5

2.0

19

age (billions of years ago)

1.0 =

0.5

0.0

water

oxygen

39% &

48%

13%

(now) 10-4

10-2

100

102

column mass (g/cmz2)

104

a bedo

albedo

albedo

0.6
0.5

0.4
0.3
0.2

0.1
0.0
0.5

0.4
0.3
0.2
0.1

0.0
0.4

0.3
0.2

—
Archean Earth _

Archean
hazy Archean

Ch, CHy CHy
’\ngu — —
i 4‘EH Jf\ | [CHa] #i0 -
. S —ay| g

Proterozmc Earth
1% present level of 0o
0.1% present level of O,

CH4 002
Ho0 CHq

—
Modern Earth
modern

COy CHy

1 1 L
1.0

wavelength (pm)

yoday |euld YIOANT ‘8- @inbi4



CH4

«}cm

Archean

hazy Archean

COy

— ,
Archean Earth _

J’ CH4 Ho0

Proterozmc Earth
1% present level of 0o

| jeuld ¥IOANT ‘8- @inbi4

LUVEX can robustly detect life on Earth over its whole inhabited history
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THE EUROPEAN LIFE MISSION CONCEPT

. |
— ™ | ; /
CH, \ V' /
H20 L »)ll /| /
collk / / - : /
Iy . \ . \, J
r/

; ¥ : H’%M ;~,/__/_/,/
Modern Venus : Modern Earth Modern Mars

>

4 um 18.5 pm

Science Objective

Biosignature search from 30-50 potentially habitable exoplanets orbiting early-M stars to
late-F stars via high-contrast direct spectroscopy of thermal emission
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WHAT CAN JWST DO FOR HABITABLE PLANETS?

TRAPPIST-1 System

What we know about
the TRAPPIST-1 planets

Innermost six do not
have H-He dominated
atmospheres

High-mean molecular
weight atmospheres or
airless rocks?

[llustration
20



Cycle 1 search for atmospheres
on TRAPPIST-1 b, ¢, g, & h

Number of transits for each
TRAPPIST-1 planet needed to rule

out a featureless spectrum

For different self-consistent atmospheric

compositions using JWST NIRSpec Prism
(Lustig-Yaeger, Meadows, & Lincowski 2019)

Detect Atmospheres in Transit with (SNR) = 5.0
NIRSpec Prism sub512 ngroup6
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HABITABLE ZONE PLANET ATMOSPHERES WITH JWST

TRAPPIST-1 e : JWST NIRSpec Prism

—e— 1 bar HyO (N, = 50) CO9
—o— 1 bar H20 cloudy (Nye. = 90)
—e— 10 bar COs (N, = 30) .
o— 10 bar Venus (No; = 120) Clouds & hazes greatly increase the

difficulty of detectmg moIecuIes

(6107) P|sSmodul] g ‘smopes| ‘debaes-b11snT

Wavelength [pm]|



HABITABLE ZONE PLANET ATMOSPHERES WITH JWST

TRAPPIS—I e : JWST/NIRSpec Prlsm

—@— 1 bar HyO (N, = 50) COq

—o— 1 bar H20 cloudy (Nye. = 90)
—e— 10 bar COs (N, = 30)
©— 10 bar Venus (N, = 120) l l

Apparent Consensus View

1. Majorinvestment to detect molecules for habitable planet candidates
2. Characterization of Earth-like atmospheres out of reach
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THE FUTURE EXTREMELY LARGE TELESCOPES ON THE GROUND

ELTChile) - TMT (Hawaii?) GMT (Chile)

39 meters 30 meters 25 meters

Astro2020 Decadal Survey recommended significant investment in TMT and GMT,
as parts of a coordinated U.S. ELT program

24



WHY ELTS FOR HABITABLE PLANETS AROUND M STARS?

Sun- I|ke Stars

Sunlike Stars ~ ( o

Low planet-to-star flux ratio

Large habitable zone

Low-Mass Stars

Cooler Stars

Higher planet-to-star flux ratio

Smaller habitable zone

25



A WORD ABOUT.CORONAGRAPHS

Sunlike Stars

Inner working

 Cooler Stars angle o< A/D

' et must be outside
——the starlight suppression

region to be seen

Inner working-angle of a
co,%nagraph gets smaller
‘with increasing telescope |
diameter (D)

26



A WORD ABOUT STARLIGHT SUPPRESSION

* Sunlike Stars

" Cooler Stars

_From space, can get

nigher contrast and

Observe planets with
E Iower planet-to-star flux

O~ ratios

~Variability of E;érth’s

“atmosphere limits

contrast achievable from

ground

27



THE TWO PATHS, AGAIN

Sunlike Stars ~ ( 3

Low planet-to-star flux ratio

Large habitable zone
Low-Mass Stars

Higher planet-to-star flux ratio

Cooler Stars

Smaller habitable zone

Sun-likeStars |

Better contrast

Modest telescope diameter

Larger central starlight suppression region
(inner working angle)

Worse contrast -
Huge telescope diameters

Smaller central starlight suppression
region (inner working angle)

28



ELT SPECTROSCOPY OF M DWARF HABITABLE PLANETS

Quality spectra will likely need_combination Ol oo
g Hi'gh—contrast coronagraph
- — Extreme adaptive optics (AO)

— High-dispersion technique

A first-generation instrument (METIS) for ELT appears to combine these
features '

— No coronagraphs in first-generation instrument suite for TMT or GMT

How many habitable planet candidates can be studied? TBD

29,
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Metallicity Cosmic Rays" galactic -
Composition Location "

& Structure
|sotopic Abundance

Rotation

Magnetic Field

Spectral Energy
Distribution Spectrum

l\/lagnetic Interior
Field

Escape
Composition Clouds & Hazes

Dvnamice Structure
|i - Atmosphere
sotopic . UV Climate
Ratios oufld i

i * Companions
Ade Wind , Radius

Luminosity
Stellar Effects

CONTEXT IS EVERYTHING IN THE SEARCH FOR LIFE

. Orbital
Minor Planets Evolultion

Exomoons
Dust

Mass

Masses
Sibling
Planets

Orbits

81 0Z sauieg 3 SMOPES|A

Semi-major Axis Oblateness
Eccentricity - Orbital Dynamics

Rotation Obliquity

Planetary Properties Rate

Biology

Inhomogeneities Technology

- Radius Surface

Mas Ocean

Composition
)|



CONTEXT IS EVERYTHING IN THE SEARCH FOR LIFE

Metallicity Cosmic Rays" @galactic Bt
Composition Location

, Orbital
& Structure Minor Planets Evolution

|sotopic Abundance Exomoons

Rotapon' B Companions Dust
A(G AViTaTa _ . N

Exoplanet studies - especially habitability & biosignatures - are inherently

g8 SMOpes|\

multi-disciplinary

Lots of different kinds of info will be needed to interpret the key direct spectra

Rotation  YPNquity

Field Planetary Properties Rate
Biology

~ Escape :
Composition Clouds & Hazes ‘
Dynamies Structure Albedo nhorsichale Technology

Atmosphere

Isotopic .
M Surface . UV Climate
alo: Pressure Shielding

Radius Surface
SS

Ma Ocean

Composition
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LUVOIR SEARCH FOR LIFE OBSERVATIONAL STRATEGY < Q)

Is the star
promising?

1. Use precursor information to establish target list Signatu =)

~ Science

| Case #1:
Is the planet in the

: : 3. Constrain orbits
haBitable zogel —Fmdmg habitable
s there water? 4. Search for atmospheric water p|a net candidates
What is the star Iike? 5. Characterize the star’s activity level
How massive is the planet? 6. Determine planet masses
i _Slgﬂature Science Case #2
7. Search for biosignatures &
5
Are there signs of life? constrain H,0 abundance Searching for biosignatures -
Are the signs of life robust? & Che,Ck b|0$|gn.a.tures and confi rmmg habltablllty
; aren't false positives
What is the atmospheric context? 9. Extend spectrum - ’
Are there other biosignatures? added features

w ALt Gl b e e
33

" Is this-a planet? 2. Multi-color point-source photometry and proper motion

How does the planet vary over its orbit?
(e.g., seasons)

Figure 3-11, LUVOIR Final Report



ROLES OF INDIRECT / SUPPORTING OBSERVATIONS

Stellartharacterization

Orbit from multi-epoch direct imaging

34



ROLES OF INDIRECT / SUPPORTING OBSERVATIONS

Stellar characterization

Orbit from multi-epoch direct imaging

Stellar spectrum drives planet heating
Stellar UV drives UV photochemistry - key for biosignature interpretation

Stellar wind affects atmospheric mass loss

85



ROLES OF INDIRECT / SUPPORTING OBSERVATIONS

Planet masses - extreme precision radial velocity (EPRV)

Options
Current RV instruments for higher mass planets
Future ELT for lower mass planets

Can we get to Earth-mass around Sun-like stars from the ground for all stars of interest?

36



ROLES OF INDIRECT / SUPPORTING OBSERVATIONS

Planet masses - astrometry

Options

Gaia & Roman for higher mass planets
A new dedicated astrometry mission?

Wide-field camera on-board LUVEx for Earth-mass planets (< 1 pas precision)

87,



ROLES OF IND‘IRECT / SUPPORTING OBSERVATIONS

Exozodiacal dust

Noise in direct exoplanet dir

Figure 3-8, LUVOIR Final Report

t observi

Jupiter _ . __
- -

~

Zodiacal light
(not the Sun)

®m LUVOIR
resolution

- ~ at30pc

/
/7

~ 7

~ -

\——

Inner 12 x 12 AU

38



ROLES OF INDIRECT / SUPPORTING OBSERVATIONS

Exozodiacal dust

Noise in direct exoplanet dir

t observ

\

Jupiter _ __ ® LUVOIR
I —— RN - resolution

~, at 30 pc

\
\
\

\

Venus . \

® :

Mars - \\ ,!

Good mid-IR photometric survey from LBTl is complete (Ertel et al. 2018, 2020)

Roman coronagraph for high-contrast imaging in optical scattered light

~N

Figure 3-8, LUVOIR Final Report

Inner 12 x

12 AU
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AKI'S INCOMPLETE THOUGHTS ON USEFUL NEAR-TERM EFFORTS

For LUVEX, we need to better simulate the whole diverse potential science
portfolio

— Anyone want to code a LUVEx astrometry simulator?
Make sure prime LUVEx target stars are getting sustained RV monitoring

— Even if can’t reach Earth-mass, we still want to know what else is in the system

Use Hubbleto study the heck out of the exoplanet host stars targeted by
JWST, before we lose far-UV spectroscopy for a while

— Some of this is happening. More!
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A space-based path and a ground-based path
to find and study Earth-like planets
' “in a variety of stellar environments

- over the coming decades

41



