Error Budgets in Precision Radial Velocity Measurements

		inter and the set is the set of t	能) 编码的 小 一 化
		and and an and the second s	

SAM HALVERSON

JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY

(c) California Institute of Technology. All rights reserved. Government Sponsorship acknowledged.

Deconstructing measurement precision

Deconstructing measurement precision

Deconstructing measurement precision

e.g. Bouchy+ 2001, Beaty+ 2015, Halverson+ 2016

See suite of other talks on stellar activity studies!

Marchwinski et al. 2015

How many photons do you need?

How many photons do you need?

Some (potentially) useful benchmarks

 $\sigma_{\text{photon}} \propto \text{SNR}^{-1} \propto \text{flux}^{-2}$

Let's assume: 3.5 m telescope 5% flat average efficiency 15 min exposure

Some (potentially) useful benchmarks

 $\sigma_{\text{photon}} \propto \text{SNR}^{-1} \propto \text{flux}^{-2}$

<u>Let's assume:</u> 3.5 m telescope 5% flat average efficiency 15 min exposure

Some (potentially) useful benchmarks

 $\sigma_{
m photon} \propto {
m SNR^{-1}} \propto {
m flux^{-2}}$

<u>Let's assume:</u> 3.5 m telescope 5% flat average efficiency 15 min exposure

$1.0 \text{ m s}^{-1} \rightarrow \text{V of } \sim 11.2$ $0.1 \text{ m s}^{-1} \rightarrow \text{V of } \sim 6.2$

The *quality* of the photons matters, too

Weighted stellar information content as function of wavelength and spectral type

The quality factor 'Q' is a measure of weighted slopes of spectrum: $\sigma_{photon} \propto Q^{-1}$

e.g. Bouchy+ 2001, Beaty+ 2015, Halverson+ 2016

The *quality* of the photons matters, too

The *quality* of the photons matters, too

Keep in mind faint limits, read noise

Applications that require lots of photons

Pushing the limits of low-mass planet discovery

• Highest precision measurements require photons, instrumental stability, broad bandwidth

Ultra-high cadence, precise measurements

- RM measurements are often photon-starved
- Asteroseismology requires exquisite time sampling

Transiting planet characterization

• Follow-up known *Kepler* and TESS stretches the limits of 3-4m telescopes.

Applications that require lots of photons

Pushing the limits of low-mass planet discovery

• Highest precision measurements require photons, instrumental stability, broad bandwidth

Ultra-high cadence, precise measurements

- RM measurements are often photon-starved
- Asteroseismology requires exquisite time sampling

Transiting planet characterization

• Follow-up known *Kepler* and TESS stretches the limits of 3-4m telescopes.

Applications that require lots of photons

Pushing the limits of low-mass planet discovery

• Highest precision measurements require photons, instrumental stability, broad bandwidth

Ultra-high cadence, precise measurements

- RM measurements are often photon-starved
- Asteroseismology requires exquisite time sampling

Transiting planet characterization

• Follow-up known Kepler and TESS stretches the limits of 3-4m telescopes.

How stable does my instrument illumination have to be?

• Fundamentally, *spectrometer records monochromatic images of entrance aperture*

How stable does my instrument illumination have to be?

 $m\lambda G = 2\sin\theta_{\rm B}\cos\theta$

			*	
FIBER & ILLUMINATION: 14 CM S ⁻¹	INSTRUMENTAL: 20 CM S ⁻¹		DETECTOR EFFECTS: 7 CM S ⁻¹	EXTERNAL SOURCES: 18 CM S ⁻¹
Modal noise (star + cal.)	Therm. stability (bench)	% INSTRUMENTAL ERROR	Pixel center offsets	Telescope & FIU guiding
Near + far-field scrambling Therm. stability (gratings)		CORRECTED BY CALIBRATION: 90	Pixel inhomogeneities	ADC variation
Stray light + ghosts	Therm. stability (camera)	COMPUTATION: 18 CM S ⁻¹	Charge transfer efficiency	Focus variation
Fiber-fiber contamination	Vibrational stability	Barycentric corrections	CCD thermal expansion	Fiber injection angle
Polarization variation Pressure stability		Calibration process	Readout thermal change	Micro-tellurics
FRD (star + calibration) Zerodur phase change		Reduction and software	Brighter-fatter effect	Scattered sunlight

A variety of errors can be traced with a simultaneous calibration source

		TOTAL EDDOD, 20 CM C-1	4	
FIBER & ILLUMINATION: 14 CM S ⁻¹	INSTRUMENTAL: 20 CM S ⁻¹	TUTAL EKKUK: 30 CM 5 *	DETECTOR EFFECTS: 7 CM S ⁻¹	EXTERNAL SOURCES: 18 CM S ⁻¹
Modal noise (star + cal.)	Therm. stability (bench)	% INSTRUMENTAL ERROR	Pixel center offsets	Telescope & FIU guiding
Near + far-field scrambling	Therm. stability (gratings)	CURRECIED BY CALIBRATION: 90	Pixel inhomogeneities	ADC variation
Stray light + ghosts	Therm. stability (camera)	COMPUTATION: 18 CM S ⁻¹	Charge transfer efficiency	Focus variation
Fiber-fiber contamination	Vibrational stability	Barycentric corrections	CCD thermal expansion	Fiber injection angle
Polarization variation	Pressure stability	Calibration process	Readout thermal change	Micro-tellurics
FRD (star + calibration)	Zerodur phase change	Reduction and software	Brighter-fatter effect	Scattered sunlight

Calibration source (B)

...while others are not, and rely on intrinsic stability

		TOTAL EDDOD, 20 CM C-1		
FIBER & ILLUMINATION: 14 CM S ⁻¹	INSTRUMENTAL: 20 CM S ⁻¹	TUTAL ERKUK: 30 GM 5 *	DETECTOR EFFECTS: 7 CM S ⁻¹	EXTERNAL SOURCES: 18 CM S ⁻¹
Modal noise (star + cal.)	Therm. stability (bench)	% INSTRUMENTAL ERROR	Pixel center offsets	Telescope & FIU guiding
Near + far-field scrambling	Therm. stability (gratings)	CURRECIED BY CALIBRATION: 90	Pixel inhomogeneities	ADC variation
Stray light + ghosts	Therm. stability (camera)	COMPUTATION: 18 CM S ⁻¹	Charge transfer efficiency	Focus variation
Fiber-fiber contamination	Vibrational stability	Barycentric corrections	CCD thermal expansion	Fiber injection angle
Polarization variation	Pressure stability	Calibration process	Readout thermal change	Micro-tellurics
FRD (star + calibration)	Zerodur phase change	Reduction and software	Brighter-fatter effect	Scattered sunlight

Calibration source (B)

Other examples of PRV error budgets

Halverson et al. 2016

Blackman et al. 2020

One final note on combining errors

Each error has behavior – not all are 'random' distributions that can be RSS'd

Takeaways

• Estimating errors is hard!

- Always be aware of the symphony of instrumentation and software pieces that work together to deliver a final RV measurement, and think about how each piece behaves.
- Remain cognizant of how many photons you need to achieve your science, and the 'quality' of the photons you're collecting.
- Empirically assessing measurement performance is a complicated task, and requires some level of prediction (assembling an error budget), and testing (in-lab and on-sky measurements).
- Identifying the 'tall tent poles' is a top priority for the next decade!

TEM image of silicon wafer lattice (typical CCD)

jpl.nasa.gov

This document has been reviewed and determined not to contain export controlled technical data.