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Abstract

Space-based high-contrast imaging mission concepts for studying rocky exoplanets in reflected light are currently
under community study. We develop an inverse modeling framework to estimate the science return of such
missions given different instrument design considerations. By combining an exoplanet albedo model, instrument
noise model, and ensemble Markov chain Monte Carlo sampler, we explore retrievals of atmospheric and planetary
properties for Earth twins as a function of signal-to-noise ratio (S/N) and resolution (R). Our forward model
includes Rayleigh-scattering, single-layer water clouds with patchy coverage, and pressure-dependent absorption
due to water vapor, oxygen, and ozone. We simulate data at R=70 and 140 from 0.4 to 1.0μm with S/N=5,
10, 15, and 20 at 550nm (i.e., for HabEx/LUVOIR-type instruments). At these same S/Ns, we simulate data for
WFIRST paired with a starshade, which includes two photometric points between 0.48 and 0.6μm and R=50
spectroscopy from 0.6 to 0.97μm. Given our noise model forWFIRST-type detectors, we find that weak detections
of water vapor, ozone, and oxygen can be achieved with observations with at least R=70/S/N=15 or
R=140/S/N=10 for improved detections. Meaningful constraints are only achieved with R=140/S/N=20
data. The WFIRST data offer limited diagnostic information, needing at least S/N=20 to weakly detect gases.
Most scenarios place limits on planetary radius but cannot constrain surface gravity and, thus, planetary mass.
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1. Introduction

The scientific field of exoplanets has been rapidly advancing
since the hallmark discovery of the first planet orbiting a Sun-
like star (Mayor & Queloz 1995). Following the launch of
NASA’s Kepler mission (Borucki et al. 2003, 2011), the field
has seen the discovery of thousands of transiting exoplanets
and the exciting result that planets with radii between 0.75 and
2.5 R⊕ are common around solar-type stars (Burke et al. 2015).
Only within the last decade have observational studies for
exoplanet atmospheric characterization seen substantial devel-
opment, starting with the first detection of an exoplanet’s
atmosphere by Charbonneau et al. (2002).

To date, the majority of exoplanet atmospheric characteriza-
tion investigations have focused on transiting worlds. Hot
Jupiters, owing to their large sizes and short orbital periods, are
typically emphasized as targets for these studies. Characteriza-
tion of small, potentially rocky exoplanets is limited to worlds
with cool stellar hosts (K and M dwarfs), which offer favorable
planet-to-star size ratios. Recently, de Wit et al. (2016) studied
the combined transmission spectra of two transiting Earth-sized
planets orbiting the ultracool dwarf TRAPPIST-1 using the
Hubble Space Telescope. While no gas absorption features
were detected by de Wit et al. (2016), this work highlights the

improvements in signal size when terrestrial-sized transiting
planets are studied around low-mass stars. Additionally, since
the habitable zone (Kasting et al. 1993) around a low-mass star
is relatively close-in, characterization studies of potentially
habitable exoplanets around cool stars can benefit from
the frequency of transit events. However, for Sun-like hosts,
the planet-to-star size ratio is much less favorable, and the
habitable zone is located far from the star, thus severely
limiting the potential for atmospheric characterization.
Direct, high-contrast imaging has now emerged as an

essential technique for studying the atmospheres of planets at
larger orbital separations from their host star (i.e., at orbital
distances 1 au). Thus far, high-contrast imaging has been
proven successful in studying atmospheres of young, self-
luminous gas giants in the near- and mid-infrared (e.g., Barman
et al. 2011; Skemer et al. 2014; Macintosh et al. 2015). These
worlds, owing to their intrinsic brightness, have typical contrast
ratios of 10−4 with respect to their hosts. A true Jupiter analog
at visible wavelengths, by comparison, would have a contrast
ratio of 10−9, while an Earth analog would have a contrast ratio
of order 10−10. Reflected light in the visible probes to
atmospheric depths of up to ∼10 bar for giant planets (Marley
et al. 2014), which is complimentary to the relatively low
pressures probed in transit observations (typically less than
10–100 mbar). Additionally, the wavelength range of
0.4–1.0 μm holds rich information about a planet’s atmosphere,
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including signatures of methane, water vapor, and haze
(Burrows 2014; Marley et al. 2014).

In spite of the incredible technological challenges, there are
multiple planned or in-development space-based missions that
would be capable of high-contrast imaging of exoplanets in
reflected light. First among these will be NASA’s Wide-Field
InfraRed Survey Telescope (WFIRST; Spergel et al. 2013),
which was identified as the top priority space mission in the
2010 National Academy of Sciences Decadal Survey of
Astronomy and Astrophysics.12 The WFIRST mission will
carry a coronagraphic instrument (CGI) with imaging cap-
ability and a visible-light integral field spectrograph of
wavelength resolution ∼50 (Balasubramanian et al. 2016; Cady
et al. 2016; Noecker et al. 2016; Seo et al. 2016; Trauger
et al. 2016; Groff et al. 2018). Although envisioned primarily
as a technology demonstrator, it may study the atmospheres of
relatively cool gas giant exoplanets that have been previously
detected using the radial velocity technique (Traub et al. 2016).

While WFIRST could also have some capability to survey
stars in the solar neighborhood for lower-mass planetary
companions (Burrows 2014; Greco & Burrows 2015; Spergel
et al. 2015; Robinson et al. 2016; Savransky & Garrett 2016), it
is anticipated that the core optical throughput of the WFIRST
CGI will be low for planetary signals. This stems primarily
from the complexities of accommodating forWFIRSTʼs on-axis
secondary mirror and support structures within the high-
contrast instruments (Krist et al. 2016; Traub et al. 2016). Low
throughput drives long requisite integration times, thereby
likely making spectroscopic observations of smaller, less-bright
worlds (such as super-Earth exoplanets) unfeasible except
around the very closest stars (Robinson et al. 2016). However,
if the WFIRST spacecraft were to be paired with an external
starshade (Cash 2006; Kasdin et al. 2012), the CGI can be
operated in a direct mode without coronagraphic masks,
substantially increasing throughput. High-contrast imaging of
sub-Neptune and terrestrial-sized exoplanets may then become
possible. The feasibility of a starshade “rendezvous” with the
WFIRST spacecraft is under active investigation (Seager
et al. 2015; Crill & Siegler 2017).

In advance of the 2020 astronomy and astrophysics decadal
survey, several large-scale space-based mission concepts are
being studied.13 Of these, two have a strong focus on the
characterization of rocky exoplanets with direct imaging: the
Habitable Exoplanet Imaging Mission (HabEx; Mennesson
et al. 2016) and the Large Ultra-Violet/Optical/InfraRed
Surveyor (LUVOIR; Peterson et al. 2017). HabEx and LUVOIR
are incorporating aspects of design that would allow the
detection of water vapor and biosignatures on planets in the
habitable zones of nearby Sun-like stars. It is therefore timely
and critical that we explore observational approaches that
maximize science yield during the development of these large-
scale mission concepts, as well as the WFIRST rendezvous
concept. To accomplish this, we must perform atmospheric and
instrument modeling to simulate the types of spectra we can
expect to measure, and we must develop tools to infer planetary
properties from these simulated observations.

Traditionally, the comparison to a limited range of forward
models has been used to infer atmospheric properties (such as
temperature structure and gas abundances) from spectral

observations. This involves iterating to a radiative-convective
solution for a given set of planetary parameters (e.g., gravity,
metallicity, equilibrium abundances, incident flux), and can
include detailed treatment of aerosols, chemistry, and dynamics
within the model atmosphere (Marley & Robinson 2015). The
goal is to generate a spectrum that matches the available data
and thus offers one potential explanation for the world’s
atmospheric state (e.g., Konopacky et al. 2013; Barman
et al. 2015; Macintosh et al. 2015). A more data-driven
interpretation of atmospheric observations is accomplished
through inverse modeling, or retrievals. Developed for solar
system studies and remote sensing (e.g., Rodgers 1976; Irwin
et al. 2008), retrievals have become a valuable tool in
constraining our understanding of the atmospheres of transiting
exoplanets. Early exoplanet retrieval work invoked grid-based
optimization schemes (Madhusudhan & Seager 2009), while
subsequent works have taken advantage of Bayesian inference
with methods such as optimal estimation and Markov chain
Monte Carlo (MCMC; e.g., Benneke & Seager 2012; Lee
et al. 2012; Line et al. 2013).
Several studies have examined the hypothetical yield from

characterizing giant exoplanets observed with a space-based
coronagraph (such as WFIRST) with retrieval techniques.
Marley et al. (2014), for example, modeled spectra we could
expect from known radial velocity gas giants if observed by the
WFIRST CGI. Given the diversity of cool giant planets, the
model spectra have a variety of input assumptions for clouds,
surface gravity, and atmospheric metallicity. Marley et al.
(2014) then applied retrieval methods to these synthetic spectra,
enabling the exploration of how well atmospheric parameters
are constrained under varying quality of data. Lupu et al.
(2016) further investigated the feasibility of characterizing cool
giant planet atmospheres through retrieval, focusing on the
ability to constrain the CH4 abundance and cloud properties.
The systematic study of the impact of conditions like signal-to-
noise ratios (S/Ns) or wavelength resolution is essential to
quantifying the scientific return of these reflected-light
observations. Nayak et al. (2017) considered the impact of an
unknown phase angle on the inference of properties such as
planet radius and gravity. In all of these studies, the S/N of the
data has a significant influence on the constraints of atmo-
spheric properties.
Previous work on smaller planets in the context of possible

future space missions includes von Paris et al. (2013), who
synthesized infrared emission observations of a cloud-free,
directly imaged Earth twin and employed a least-squares
approach and χ2 maps to perform retrievals and explore
parameter space (considering the effects of instrument resolu-
tion and S/Ns). A collection of recent studies (Mawet
et al. 2017; Wang et al. 2017a, 2017b) examined atmospheric
species detection using “high-dispersion coronagraphy,” which
couples starlight-suppression technologies with high-resolution
spectroscopy. In these studies, simulated observations (typi-
cally at spectral resolutions, R=λ/Δλ, of many hundreds to
tens of thousands) are cross-correlated with template molecular
opacity spectra to explore the feasibility of species detection.
While this novel approach can yield detections of key
atmospheric constituents, the abundance of these atmospheric
species cannot be robustly constrained.
To date, there still does not exist a systematic study of the

atmospheric characterization of small exoplanets using retrieval
techniques on reflected-light observations at spectral

12 http://sites.nationalacademies.org/bpa/bpa_049810
13 https://science.nasa.gov/astrophysics/2020-decadal-survey-planning
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resolutions relevant to WFIRST rendezvous, HabEx, and
LUVOIR. Motivated by this need, we present here our
extension of Bayesian retrieval techniques into the terrestrial
regime. We construct a forward model suitable for simulating
reflectance spectra of Earth-like planets in the visible
wavelength range of 0.4 to 1.0 μm. We explore retrievals of
planetary and atmospheric properties from simulated data sets
at varying spectral resolutions and S/Ns. A retrieval framework
such as this allows us to quantify uncertainties we expect for
key planetary parameters given certain observing scenarios.
Thus, our approach enables us to search for the minimal
observing conditions that achieve the scientific goal of
identifying traits associated with habitability and life. In
particular, we are interested in our ability to detect and
constrain abundances of molecules such as water, oxygen, and
ozone; characterize basic properties of a cloud layer; and
measure bulk parameters such as radius.

In Section 2, we describe our forward model and construc-
tion of simulated data. In Section 3, we validate our forward
model by building up retrieval complexity (i.e., number of
retrieved parameters). We perform a study of retrieval
performance with respect to spectral resolution and S/N in
Section 4, with implications for HabEx/LUVOIR. We also
study the retrieval performance for data sets expected from a
WFIRST rendezvous scenario, where the CGI would provide
modest-resolution spectroscopy in the red (600–970 nm) and
photometry in the blue (480–600 nm). We present our
discussion and conclusions in Sections 5 and 6, respectively.

2. Methods

The observed quantity for a directly imaged exoplanet in
reflected light at a given phase (i.e., planet–star–observer)
angle, α, is the wavelength-dependent planet-to-star flux ratio,

F

F
A

R

r
, 1

p

s
g

p
2

a= F
⎛
⎝⎜

⎞
⎠⎟( ) ( )

where Ag is the geometric albedo, Φ(α) is the phase function,
Rp is the radius of the planet, and r is the orbital separation. The
phase function (which depends on wavelength) translates the
planetary brightness at full phase (i.e., where α=0°) to its
brightness at different phase angles. The wavelength-dependent
geometric albedo is the ratio of the measured flux from the
planet at full phase to that from a perfectly reflecting Lambert
(i.e., isotropically reflecting) disk with the size of the planet.
We denote the product of the geometric albedo and the phase
function as the phase-dependent “reflectance” of the planet. In
general, the geometric albedo encodes information about the
composition and structure (i.e., “state”) of an atmosphere,
while the phase function is strongly related to the scattering
properties of an atmosphere (e.g., Marley et al. 1999;
Burrows 2014).

To understand the information contained in direct-imaging
observations of exoplanets in reflected light, we employ a
retrieval (or inverse analysis) framework that consists of
several linked simulation tools and models. Of central
importance is a well-tested three-dimensional albedo model—
described in greater depth below—that computes a reflectance
spectrum at high resolution for a planet given a description of
its atmospheric state (McKay et al. 1989; Marley et al. 1999;
Cahoy et al. 2010; Lupu et al. 2016; Nayak et al. 2017). When

coupled with a simulator for degrading a high-resolution
spectrum to match the resolution of an instrument, we refer to
these two tools as the “forward model.” By adding simulated
noise to forward-model spectra, we generate faux “observa-
tions” of worlds as would be studied by future high-contrast
imaging missions. To create “observed” spectra, we adopt a
widely used direct-imaging instrument simulator (Robinson
et al. 2016) that generates synthetic observations given an
input, noise-free spectrum.
Given an “observed” planet-to-star flux ratio spectrum, our

inverse analyses use a Bayesian inference tool that compares
the observation to forward-model outputs to sample the
posterior probability distributions for a collection of atmo-
spheric-state parameters. In other words, our inverse analyses
indicate what range of atmospheric-state parameters (e.g., gas
abundances) adequately describe a direct-imaging observation.
Our Bayesian parameter estimations use an open-source affine-
invariant MCMC ensemble sampler, emcee (Goodman &
Weare 2010; Foreman-Mackey et al. 2013).
In this work, retrieval analyses generally proceed by first

simulating a noise-free spectrum of a world with a known
atmospheric state (e.g., Earth). We then add simulated
observational noise to this spectrum to create a synthetic
observation. Following Bayesian parameter estimation on this
synthetic observation, we can compare a retrieved atmospheric
state to the original, known atmospheric state, thereby allowing
us to understand how observational noise affects our ability to
deduce the true nature of an exoplanetary atmosphere.

2.1. Albedo Model

Our three-dimensional albedo model (see also Cahoy
et al. 2010) divides a world into a number of plane-parallel
facets with coordinates of longitude (ζ) and colatitude (η), with
the former referenced from the subobserver location and the latter
ranging from zero at the northern pole to π at the southern pole.
A single facet has downwelling incident stellar radiation from a
zenith angle cos sin coss sm q h z a= = -( ), where, as earlier, α
is the phase angle. The facet reflects to the observer in a direction
whose zenith angle is given by cos sin coso om q h z= = .
Note that, at full phase (where the geometric albedo is defined),
the observer and source are colinear such that o sm m= for all
facets.
The atmosphere above each facet is divided into a set of

pressure levels, and we perform a radiative transfer calculation
to determine the emergent intensity. With the intensities
calculated for an entire visible hemisphere, we follow the
methods outlined by Horak (1950) and Horak & Little (1965)
to perform integration using Chebychev–Gauss quadrature,
thus producing the reflectance value at a given wavelength. We
repeat this procedure at each of the wavelength points within a
specified range to build up a reflectance spectrum.
Taking I(τ, μ, f) to be the wavelength-dependent intensity at

optical depth τ in a direction determined by the zenith and
azimuth angles μ and f, we ultimately need to determine the
emergent intensity from each facet in the direction of the
observer, I(τ=0, μo, fo). Thus, for each facet, we must solve
the one-dimensional, plane-parallel radiative transfer equation,

dI

d
I S, , , , , 2m

t
t m f t m f= -( ) ( ) ( )

where S is the wavelength-dependent source function.
Following Meador & Weaver (1980), Toon et al. (1989), and
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Marley & Robinson (2015), the source function is
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where w̄ is the single-scattering albedo, Fs is the incoming
stellar flux at the top of the atmosphere (which we normalize to
unity so that emergent intensities correspond to reflectivities),
fs is the stellar azimuth angle, and p is the scattering phase
function. Note that our source function does not include an
emission term, since we are not computing thermal spectra.
Recall that the first term in Equation (3) describes directly
scattered radiation from the direct solar beam, while the final
term describes diffusely scattered radiation from the ( ,m f¢ ¢)
direction scattering into the (μ, f) direction.

Like most standard tools for solving the radiative transfer
equation, we separate treatments of directly scattered radiation
from diffusely scattered radiation, and, for both, it is convenient
to express the scattering phase function in terms of a unique
scattering angle, Θ. As single-scattered radiation typically has
more distinct forward- and backward-scattering features, we
choose to represent the scattering phase function for the direct
beam with a two-term Henyey–Greenstein (TTHG) phase
function (Kattawar 1975),

p fp g f p g, 1 , , 4TTHG HG f HG bQ = Q + - Q( ) ( ) ( ) ( ) ( )

where pHG is the Henyey–Greenstein (HG) phase function
with
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Recall that a TTHG phase function can represent both forward-
and backward-scattering peaks, while the (one-term) HG phase
function only has one peak (typically in the forward direction).
In the previous expressions, ḡ is the asymmetry parameter, f is
the forward/backward scatter fraction, gf is the asymmetry
parameter for the forward-scattered portion of the TTHG, and
gb is the asymmetry parameter for the backward-scattered
portion of the TTHG. For the forward- and backward-scattering
portions of the TTHG phase function, we use g gf = ¯,
g g 2b = - ¯ , and f g1 b

2= - . Substituting these into the TTHG
phase function expression yields
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For radiation that is single-scattered from the solar beam to the
observer, the scattering geometry is fixed by the planetary
phase angle such that Θ=π−α. Our choice of parameters,
and their relation to ḡ, in the TTHG was designed by Cahoy
et al. (2010) to roughly reproduce the phase function of liquid-
water clouds. This parameterization, however, is different from
that proposed by Kattawar (1975). We do not expect our results
to be sensitive to the details of a particular phase function
treatment, as Lupu et al. (2016) showed that scattered-light
retrievals struggle to constrain phase function parameters.

We adopt a standard two-stream approach to solving the
radiative transfer equation (Meador & Weaver 1980). In this
case, the diffusely scattered component of the source function
is azimuthally averaged. Combined with our representation of
the directly scattered component, we have
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where the azimuth-averaged phase functions are given by
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We represent the azimuth-averaged scattering phase functions
as a series of Legendre polynomials, Pl(μ), expanded to order
M with
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where the phase function moments, gl, are defined according to
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The first moment of the phase function is related to the
asymmetry parameter, with g g 31=¯ . We use a second-order
expansion of the phase function, giving
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In a given atmospheric layer of our albedo model, the optical
depth is the sum of the scattering optical depth and the
absorption optical depth, τ=τscat+τabs. The scattering
optical depth has contributions from Rayleigh scattering and
clouds, so that scat Ray cld cldt t w t= + ¯ , where cldw̄ is the cloud
single-scattering albedo. The single-scattering albedo for a
layer is then scatw t t=¯ . We determine the asymmetry
parameter, ḡ, with an optical depth weighting on the
Rayleigh-scattering asymmetry parameter (which is zero)
and the cloud-scattering asymmetry parameter, yielding
g gcld cld scatt t=¯ ¯ ( ). When representing the second moment of
the phase function, we use g2

1

2 Ray scatt t= ( ) so that g2 tends
toward the appropriate value for Rayleigh scattering (i.e., 1/2;
Hansen & Travis 1974) when the Rayleigh-scattering optical
depth dominates the scattering optical depth.

2.2. Model Upgrades

As compared to prior investigations that have used the
Cahoy et al. (2010) albedo tool (e.g., Lupu et al. 2016; Nayak
et al. 2017), we have updated the model to include an optional
isotropically reflecting (Lambertian) lower boundary (mimick-
ing a planetary surface) and added pressure-dependent absorp-
tion due to H O2 , O3, O2, and CO2. As in previous studies, CH4

remains a radiatively active species in the model. We also
include Rayleigh scattering from H O2 , O2, CO2, and N2 (in
addition to H2 and He from previous studies). As in Lupu et al.
(2016), we allow for an extended gray-scattering cloud in our
atmospheres.
In Lupu et al. (2016), their two-layer cloud model

atmosphere includes a deeper, optically thick cloud deck that
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essentially acts as a reflective surface. Unlike the gas giants
within that study, though, terrestrial planets have a solid surface
we can probe. We characterize our isotropically reflecting
lower boundary using a spherical albedo for the planetary
surface, As, which represents the specific power in scattered,
outgoing radiation compared to that in incident radiation. For
this study, we simply adopt gray surface albedo values, which
reduces complexity and computation time. For the inhomoge-
neous surface of a realistic Earth, featuring oceans and
continents, the surface albedo is wavelength-dependent, and
we hope to investigate the significance of such surfaces in
future work.

We undertook a test to check our reflective lower-boundary
condition in the limit of a transparent atmosphere. Without
atmospheric absorption or scattering, our assumption of a
Lambertian surface would imply that the reflectivity (or phase
function) determined by our albedo code should follow the
analytic Lambert phase function,

sin cos
. 12L a

a p a a
p

F =
+ -( ) ( ) ( )

Figure 1 compares the model phase function with the analytic
phase function and shows complete agreement, confirming that
our treatment of the surface is correct.

Previous work featuring the albedo model adopted here used
a predefined atmospheric pressure grid. To accommodate the
finite surface pressures of rocky planets, as well as the various
combinations of cloud parameters our retrievals will explore,
we instead establish an adaptive method of determining the
pressure grid. Here we divide the atmosphere into a pressure
grid of Nlevel, bounded by P=Ptop at the top of the atmosphere
and P=P0 at the surface. In a cloud-free scenario, we simply
divide the atmosphere evenly in log-P space.

For our simulations that include a single cloud deck, we
adaptively determine the pressure value at each level depending
on the location, thickness, and optical depth of the cloud. The
quantities that define the cloud deck are pt, the cloud-top
pressure; dp, the atmospheric pressure across the cloud; and τ,
the cloud optical depth. We begin by assigning a number of
layers to the cloud, imposing two conditions: (1) there should
be at least three model pressure layers to each atmospheric
pressure scale height (perH=3), and (2) the cloud optical

depth in a layer must remain below at most 5 (maxtau=5).
This allows us to avoid any one layer spanning a large extent
within the atmosphere and also avoids cloud layers that have
extremely large scattering optical depths.
When beginning our gridding process, we propose an initial

number of cloud layers, Nc perH numH= ´ , where
ln

p dp

p
t

t
numH = +

is the number of e-folding distances through
the cloud (serving as a proxy for scale height). The aerosol
optical depth for each pressure layer within the cloud would
then simply be

Nc
tD = t . However, if maxtautD > , we

adjust the cloud resolution by increasing Nc by a factor of

maxtau
tD and then round up to the nearest integer. In other words,

we increase the resolution of the pressure grid through the
cloud until the layer optical depth is under maxtau. We
determine successive pressure level values through the cloud
with p i p i p1 ln= - + D[ ] [ ] , where pln

p dp p

N

ln lnt t

c
D = + -( )

,
starting from the top of the cloud. We divide the remaining
N Nlevel c- levels in uniform pln space on either side of the
cloud, weighted by the number of pressure scale heights above
(Nt) and below (Nb) the cloud. Figure 2 visualizes the three
portions of the atmosphere.
For simplicity, we assume an isothermal atmosphere

(at T= 250 K), as temperature has little effect on the
reflected-light spectrum (Robinson 2017). Pressure, however,
has a strong impact on molecular opacities, as seen in Figure 3.
We incorporated high-resolution pressure-dependent opacities
for all molecules in our atmosphere. The absorption opacities
are generated line-by-line from the HITRAN2012 line list
(Rothman et al. 2013) for seven orders of magnitude in
pressure (10−5

–102 bar) at T, spanning our entire wavelength
range at <1 cm−1 resolution. Figure 3 also illustrates how
absorption features of H O2 , O2, and O3change when in an
atmosphere of 1bar versus one of 10bars.
We interpolate our high-resolution opacity tables to the

slightly lower resolution of the forward model in order to
maintain short model runtimes while not affecting the accuracy

Figure 1. Comparing our model phase function to the analytic Lambertian
phase function (Equation (12)). No atmospheric absorption or scattering is
present in the forward model.

Figure 2. Illustrative schematic of our model atmosphere’s structure. The
atmosphere has N N Nt c b+ + layers. Table 1 lists the definitions, fiducial
values, and priors of the presented parameters.
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of the output spectra. For each model layer, we interpolate over
the opacities from our table given the pressure. The chemical
abundances in our forward-model atmosphere are constant as a
function of pressure, and we also adopt a uniform acceleration
due to gravity.

We have also added an option to include partial cloudiness
across a planetary disk whose fractional coverage is described
by fc. To mimic partial cloudiness as we see on Earth, we call
the forward model twice. We use the same set of atmospheric
and planetary parameters for both calls, except for the cloud
optical depth. “Cloudy” is the call that has a nonzero cloud
optical depth, while “cloud-free” is the call where we set the
cloud optical depth to zero. Each call returns a geometric
albedo spectrum, and we combine the two sets with the
fractional cloudiness parameter such that the combined
spectrum follows f fcloudy 1 cloud freec c´ + - ´( ) – .

2.3. Albedo Model Fiducial Values and Validation

The generalized three-dimensional albedo model described
above can simulate reflected-light spectra of a large diversity of
planet types, spanning solid-surfaced worlds to gas giants with
a variety of prescribed atmospheric compositions. For the
present study, however, we choose to focus on Earth-like
worlds, which are described in detail below. Thus, we define a
set of fiducial model input parameters that are designed to
mimic Earth and thereby enable us to generate simulated
observational data sets for an Earth twin.

Table 1 summarizes the fiducial model parameter values
adopted for our Earth twin. Also shown are the priors for these
parameters, which we use when performing retrieval analyses.
For an Earth-like setup, the surface atmospheric pressure is
P0=1 bar, and we adopt a surface albedo of As=0.05, which
is representative of mostly ocean-covered surface. We adopt a
uniform acceleration due to gravity of g=9.8 ms−2 and set
the planetary radius to R⊕. For convenience, we sometime refer
to these four variables (P0, As, g, and Rp) as the bulk planetary
and atmospheric parameters.

We focus on molecular absorption due to H O2 , O3, and O2.
While our albedo model includes opacities from CH4 and CO2

as well, we omit these two species, as the reflected-light
spectrum of Earth in the visible contains no strong features for
these molecules. The input values for the molecular

abundances (or volume mixing ratios) are H O2 =3×10−3,
O3=7×10−7, and O2=0.21. These abundance values are
based on column-weighted averages from a standard Earth
model atmosphere with vertically varying gas mixing ratios
(McClatchey et al. 1972). The primary Rayleigh scatterer and
background gas in our fiducial model is N2, whose abundance
makes up the remainder of the atmosphere after all other gases
are accounted for (i.e., roughly 0.79). Rayleigh scattering is
treated according to Hansen & Travis (1974) with constants to
describe the scattering properties of N2, O2, and H O2 from
Allen & Cox (2000). We do not include polarization or Raman-
scattering effects.
Our cloud model was designed to be minimally parametric

while still enabling us to sufficiently reproduce realistic spectra
of Earth. Our single-layer gray H O2 cloud has 1w =¯ and
g 0.85=¯ , which are characteristic of water clouds across the
visible range. These two parameters were fixed to minimize
retrieval model complexity, as we believe that water is the most
likely condensate for worlds in the habitable zone. Never-
theless, future studies may not wish to assume values of w̄ and
ḡ a priori. Cloud-top pressure (pt) and fractional coverage ( fc)
are set at 0.6 bar and 50%, respectively, which are roughly
consistent with observations of optically thick cloud coverage
on Earth (Stubenrauch et al. 2013). Cloud thickness (dp) and

Figure 3. Left: high-resolution (1 cm−1) H O2 opacities from 0.4 to 1.0 μm at three different pressures: 0.1, 1, and 10 bars. Right: absorption features in an R=140
spectrum from 0.3 to 1.05 μm of H O2 , O2, and O3 at the fiducial mixing ratios listed in Table 1 at P=1 and 10 bars. For each spectrum here, the atmosphere only
contains the stated molecule and a radiatively inactive filler gas to match the pressure.

Table 1
List of the 11 Retrieved Parameters in the Complete Cloudy Model, Their

Descriptions, Fiducial Input Values, and Corresponding Priors

Parameter Description Input Prior

Plog 0 (bar) Surface pressure log 1( ) [−2,2]
logH O2 Water vapor mixing ratio log 3 10 3´ -( ) [−8,−1]
logO3 Ozone mixing ratio log 7 10 7´ -( ) [−10,−1]
logO2 Molecular oxygen mixing

ratio
log 0.21( ) [−10,0]

Rp (RÅ) Planet radius 1 [0.5, 12]
glog (m s−2) Surface gravity log 9.8( ) [0,2]
Alog s Surface albedo log 0.05( ) [−2, 0]
plog t (bar) Cloud-top pressure log 0.6( ) [−2,2]
dplog (bar) Cloud thickness log 0.1( ) [−3,2]

log t Cloud optical depth log 10( ) [−2,2]
flog c Cloudiness fraction log 0.5( ) [−3,0]
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optical depth (τ) were set to 0.1bar and 10, respectively, based
on results from the MODIS instrument (http://modis-atmos.
gsfc.nasa.gov) used in Robinson et al. (2011).

With fiducial values chosen, we validate our forward model
against a simulated high-resolution disk-integrated spectrum of
Earth at full phase, as shown in Figure 4. The comparison
spectrum is produced by the NASA Astrobiology Institute’s
Virtual Planetary Laboratory (VPL) sophisticated 3D, line-by-
line, multiple-scattering spectral Earth model (Robinson
et al. 2011). The Robinson et al. (2011) tool can simulate images
and disk-integrated spectra of Earth from the ultraviolet to the
infrared. It has been validated against observations at visible
wavelengths taken by NASA’s EPOXI (Robinson et al. 2011)
and LCROSS missions (Robinson et al. 2014).

Features of the Robinson et al. (2011) model include Rayleigh
scattering due to air molecules, realistic patchy clouds, and gas
absorption from a variety of molecules, including H O2 , CO2, O2,
O3, and CH4. Surface coverage of different land types (e.g.,
forest, desert) is informed by satellite data, and water surfaces
incorporate specular reflectance of sunlight. A grid of thousands
of surface pixels is nested beneath a grid of 48 independent
atmospheric pixels, all of equal area. For each surface pixel,
properties from the overlying atmospheric pixels are used as
inputs to a full-physics, plane-parallel radiative transfer solver:
the Spectral Mapping Atmospheric Radiative Transfer (SMART)
model (Meadows & Crisp 1996). Intensities from this solver are
integrated over the pixels with respect to solid angle, thereby
returning a disk-integrated spectrum.

The sophistication of the Robinson et al. (2011) model
makes it unsuitable to retrieval studies, however, as model
runtimes are measured in weeks for the highest-complexity
scenarios. This, in part, justifies our adoption of a minimally
parametric albedo model (whose runtime is measured in
seconds). Furthermore, as in Figure 4, our efficient albedo
model reproduces all of the key features of the Robinson et al.
(2011) model. The most notable differences—that the efficient
model, as compared to the Robinson et al. (2011) model, is
more reflective in the blue and less reflective in the red—are
simply due to our adoption of a gray surface albedo. Land and

plants, which cover roughly 29% of Earth’s surface, are
generally more reflective in the red than in the blue. Figure 4
also compares a spectrum from our forward model against a
spectrum of a partially clouded ocean planet generated with the
Robinson et al. (2011) model. This ocean world is identical to
Earth except for the fact that its surface is covered entirely by
an ocean, with no land present. The surface albedo in the ocean
model is gray beyond 500nm; shortward of this, the
reflectivity increases, likely leading to the discrepancy in our
comparison at the bluest wavelengths. Still, with a more
accurate match to a planet that has a nearly gray albedo through
the visible, we consider our assumption of gray surface albedo
to be the main reason for the discrepancies when compared to
the Robinson et al. (2011) realistic model.
Finally, in our albedo model, we set 100 facets for the visible

hemisphere and calculate a high-resolution geometric albedo
spectrum at 1000 wavelength points between 0.35 and
1.05 μm. Like Lupu et al. (2016), we only consider a planet
at full phase (α=0°). While direct-imaging missions will not
obtain observations of exoplanets at full phase, this assumption
makes little difference for our results, as we are not computing
integration times and only work in S/N space. Additionally, as
Nayak et al. (2017) followed up Lupu et al. (2016) by
retrieving phase information from giant planets in reflected
light, we anticipate performing a similar expansion in the
future. Our forward model has 61 pressure levels in an
isothermal atmosphere of 250 K, bounded below by a reflective
surface. The top of the atmosphere is set at Ptop=10−4 bars.

2.4. Retrieval Setup and Noise Model

We convert a high-resolution geometric albedo spectrum to a
synthetic planet-to-star flux ratio spectrum given the resolution
of an instrument and a noise model. We then apply a Bayesian
inference tool on the synthetic data set to sample the posterior
probability distributions of the forward-model input para-
meters. To perform Bayesian parameter estimation, we utilize
the open-source affine-invariant MCMC ensemble sampler
emcee (Goodman & Weare 2010; Foreman-Mackey et al.
2013). Ensemble refers to the use of many chains, or walkers,

Figure 4. Left: spectrum generated with the forward model in this study using fiducial values from Table 1. Key spectral features from the atmospheric species in our
model are labeled. Right, top: comparison of the cloudy forward model in this study using fiducial values from Table 1 to a spectrum from a more computationally
complex 3D forward model of Earth at full phase described in Robinson et al. (2011). Right, bottom: comparison of the cloudy forward model to a spectrum of a
planet generated using the 3D model from Robinson et al. (2011) that is like Earth except it only has ocean coverage.
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to traverse parameter space; as a massively parallelized
algorithm, it is computationally efficient. Affine invariance
refers to the invariant performance under linear transformations
of parameter space, enabling the algorithm to be insensitive to
parameter covariances (Foreman-Mackey et al. 2013). With a
cloudy retrieval, we can expect complex correlations that a
sampler should be able to reveal. As it is more agnostic to the
shape of the posterior, we choose emcee following Nayak
et al. (2017) over Multinest, another sampler Lupu et al.
(2016) considered that yielded consistent results. The albedo
model is coded in Fortran; we convert it into a Python-callable
library with the F2PY package. Each call to the forward model
takes approximately 10 s of clock time on an eight-core
processor. To visualize the MCMC results, we utilize the
corner-plotting package developed by Foreman-Mackey
(2016).

Table 1 lists the priors for our parameters. We offer a
generous range on the molecular abundances; we allow O2 in
particular to dominate the atmospheric composition. Our choice
of radius range (0.5–12 RÅ) reflects the range of planetary sizes
from Mars to Jupiter. Also, when performing retrievals,
we impose two limiting conditions to maintain physical
scenarios. First, we limit the mixing ratio of N2, fN2

=
1 gas abundances- å ( ), to be between 0 and 1. Second, for
the cloud pressure terms, we reject any drawn value that does
not satisfy 10 10 10p dp Pt 0+ < (i.e., that the cloud base cannot
extend below the bottom of the atmosphere). Note that for the
purposes of the retrieval, we consider pressures in log space.

We simulate noise in our observations following the
expressions given in Robinson et al. (2016). For simplicity,
we include only read noise and dark current, as Robinson et al.
(2016) showed that detector noise will be the dominant noise
source in WFIRST-type spectral observations of exoplanets.
Detector and instrument parameters for the HabEx and
LUVOIR concepts are only loosely defined, and advances in
detector technologies for these missions may move observa-
tions out of the detector-noise-dominated regime. In the
detector-noise-dominated regime, the S/N is simply

c t

c c t
S N 13

p

d r

int

int

=
´

+ ´( )
( )/

,where tint is the integration time, cp is the planet count rate, cd
is the dark-noise count rate, and cr is the read-noise count rate.
More rigorously, it can be shown that, at constant spectral
resolution, q A BS N g a lµ F l( ) , where q is the wavelength-
dependent detector quantum efficiency,  is throughput, and
Bλ is the host stellar specific intensity (taken here as a Planck
function at the stellar effective temperature). We use a stellar
temperature of 5780 K for the blackbody. When the S/N at one
wavelength is specified, this scaling implies that the calculation
of the S/N at other wavelengths is independent of the imaging
raw contrast of the instrument. We can expect the noise at the
redder end of our range to be large, as the detector quantum
efficiency (taken to be appropriate for the WFIRST/CGI)
rapidly decreases. Since we treat only S/N rather than
modeling exposure times, the exact mix of noise sources is
not relevant (so that, e.g., dark current and read noise are
indistinguishable). The key relevant properties of the noise
model are that it is uncorrelated between spectral channels and

its magnitude only depends on wavelength via a dependence on
point-spread function area (Robinson et al. 2016, their Equation
(26)), which will be true for detector-limited cases but may not
be true for large-aperture instruments limited by speckle noise.
For our study, we will consider multiple wavelength

resolutions, R, and S/Ns. Working in S/Ns (instead of
integration times) makes our investigations independent of
telescope diameter, target distance, and other system-specific or
observing parameters. Because the S/N is dependent on
wavelength, we reference our values to be at the V band (550
nm) for all resolutions for HabEx/LUVOIR. Since the
WFIRST/CGI spectrograph is currently planned to only extend
to 600 nm at the blue end, we opt to reference our WFIRST S/
Ns to this wavelength. Unlike previous studies (Lupu
et al. 2016; Nayak et al. 2017), our simulated WFIRST
rendezvous data include two photometric points in the blue,
which is consistent with current CGI designs. We set the S/N
in the WFIRST filters to be equal to that at 600nm.
Our simulation grid setup is shown in Table 2, where the

spectral resolutions and S/Ns assumed for different observing
scenarios are indicated. Figure 5 demonstrates the WFIRST
rendezvous scenario data along with R=70 and140 data
points (for HabEx/LUVOIR) plotted over the forward-model
spectrum before noise is added. The scaling of the S/N with
wavelength for the WFIRST rendezvous (normalized to unity at
600 nm), as well as our R=70 and 140 cases (normalized to
unity at 550 nm), is shown in Figure 6. The impact of the
host stellar SED sets the overall shape of the S/N scaling,
with additional influence from atmospheric absorption band
features, as well as detector quantum efficiency effects (that
have strong impacts at red wavelengths). Thus, Figure 6 can be
used to translate our stated S/N to the S/N at any other
wavelength (e.g., an S/N=10 simulation has an S/N in the
continuum shortward of the 950nm water vapor band of
roughly 0.3×10=3).
When generating simulated data with a noise model, there

are several options for handling the placement/sampling of the
mock observational data points. Previous studies (Lupu
et al. 2016; Nayak et al. 2017) have generated a single
randomized data set for a given S/N. The placement of a single
spectral data point is determined by randomly sampling a
Gaussian distribution whose width is determined by the
wavelength-dependent S/N. While this treatment can accu-
rately simulate a single observational instance, it also runs the
risk (especially at lower spectral resolution and S/N) of biasing
retrieval results, as the random placement of only a small
handful of spectral data points can significantly impact the
outcome. Given this, it is ideal to retrieve on a large number
(10) of simulated data sets at a given spectral resolution and
S/N, where a comprehensive view of all the posteriors from the
collection of instances will indicate expected telescope/
instrument performance. Unfortunately, given the large number
of R–S/N pairs in our study (10) and the long runtime of an
individual retrieval (of order 1 week on a cluster), running ∼10
noise instances for each of our R–S/N pairs is computationally
unfeasible (requiring ∼100 weeks of cluster time). Thus, we
opt for an intermediate approach that maintains computational
feasibility and avoids potential biases from individual noise
instances. Here we run only a single noise instance at a given
R–S/N pair, but we do not randomize the placement of the
individual spectral points. In other words, the individual
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simulated spectral points are placed on the “true” planet-to-star
flux ratio point and assigned error bars according to the S/N
and noise model. While this approach prevents having a small
handful of randomized data points biasing the retrieval results,
it does lead to likely optimistic results, especially at modest
S/N (i.e., S/N∼10), since data point randomization is, in
effect, an additional “noise” source that we are omitting. This
means that the posterior distributions will usually be centered
on the true values in an unrealistic fashion. However, the width
and shape of the posterior covariances will be representative of
real observations, so the fidelity of retrievals can be assessed.
We keep this optimism in mind when discussing results in later
sections; in particular, we compare the performance of
retrievals on multiple noise instances of a subset of the cases
we consider to the nonrandomized case in Section 5.2.

3. Retrieval Validation

Before using our framework on simulated data, we validate
its accuracy and examine its performance. For this initial
validation, we use nonrandomized, wavelength-independent
noise at an S/N of 20 for a spectrum at a resolution of
R=140. Table 3 lists our four validation model variants, each
increasing in complexity as we systematically explore how the
addition of retrieved parameters influences the posterior
distributions and correlations. In Model I, we fix all parameters
except P0 and As. In Model II, we add g and Rp; in Model III,
we add gases as retrieved parameters (H O2 , O3, O2); and in
Model IV, we add all cloud parameters. Incrementally
increasing the number of free parameters (from 2 to 11) allows
us to see the interconnections between them and helps us
understand how clouds can obscure our inferences.
In Figure 7, we present the posterior distributions for Model

I. In the two-dimensional correlation histogram, a higher
probability corresponds to a darker shade. With all else held
constant, we see narrow posterior distributions and a slight
correlation between P0 and As. For lower values of surface
pressure, which controls the turnoff of the Rayleigh-scattering
slope, we need a brighter surface to maintain the measured
brightness, especially in the red end of the spectrum, and
vice versa. We mark the 16%, 50%, and 84% quantiles in the
marginalized one-dimensional posterior distributions. The
posterior distributions for Model II are shown in Figure 8
and are generally narrow (as only four parameters are being
retrieved). There are two key correlations, one between g and
P0 and one between Rp and As. Both gravity and surface
pressure influence the column mass so that, when attempting to
fit a spectrum, we can trade a larger gravity with a larger
surface pressure and maintain a similar column mass (which
controls, e.g., the Rayleigh-scattering feature). Additionally, we
can trade off a larger reflecting surface area (i.e., larger Rp) with
a darker surface (lower As), which is a statement of the typical
“radius/albedo degeneracy” problem. The posterior for surface
albedo is now an upper limit instead of a constraint. As a
result, the radius posterior distribution appears truncated
at larger values given the tight correlation between these
two parameters. The correlation seen originally in Model I,
between P0 and As, then acts as a chain between the other two
more prominent correlations to induce correlations between
parameters such as As and g or Rp and P0.
Once we allow gases to be free parameters in Model III

(Figure 9), the P0 and As correlation becomes diminished as

Figure 5. High-resolution (1000 wavelength points from 0.35 to 1.05 μm)
forward-model spectrum, overplotted with simulated WFIRST rendezvous and
R=70 and140 data (top to bottom). Key spectral features for atmospheric
gases in our model are labeled. In the top panel, “1” and “2” mark the span of
the WFIRST Design Cycle 7 filters (see Table 2).

Table 2
Simulated Data Sets

R=70, R=140 WFIRST Rendezvousa

Wavelength (μm) 0.4–1.0 0.506, 0.575b, R=50:
0.6–0.97c

Data quality S/N550nm=5, 10,
15, 20

S/N600nm=5, 10, 15, 20

Note. We do not randomize the noise for any of the data sets.
a Using WFIRST Design Cycle 7 values fromhttps://wfirst.ipac.caltech.edu/
sims/Param_db.html.
b The first photometric band is centered on 0.506 μm and covers
0.48–0.532 μm. The second photometric band is centered on 0.575 μm and
covers 0.546–0.6 μm. We assume 100% transmission.
c We combine three integral field spectrograph bands into one at R=50 from
0.6 to 0.97 μm. Separated, they are 0.6–0.72, 0.7–0.84, and 0.81–0.97 μm.
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H O2 , due to its numerous bands across the spectral range,
becomes a primary control of brightness. The significant impact
of H O2 on the spectrum leads to a strong positive correlation
between H O2 abundance and planetary size, as additional water
vapor absorption can be compensated by a larger planetary size
to maintain fixed brightness. We now see gravity linked to the
molecular abundances, which is expected, as surface gravity
directly influences the column abundance of a species. This key
correlation also causes the individual gas abundances to be
correlated with each other. The main correlations from Model
II are still present. We note once more that we do not have
constraints on the surface albedo, again leading to an
asymmetric distribution for radius. Thus, from the strong
correlation of H O2 with Rp and the fundamental correlation
between Rp and As, we see correlations between planetary
radius, surface albedo, and all gas abundances. Weak
correlations between surface pressure and gas abundances are
due to column abundance effects.

Finally, as shown by Figure 10, we retrieve on the data with
the full forward model, adding in the cloud parameters pt, dp, τ,
and fc. This version of the model is what we apply when
simulating direct-imaging data in the upcoming sections and
represents our most realistic (i.e., true to the actual Earth)
scenario. The optical depth is shown to only have a lower-limit

constraint. Thus, the retrieval detects a cloud but cannot
constrain the optical depth beyond showing that the cloud is
optically thick. There is an expected correlation between τ and
fc; a higher cloudiness fraction can complement a less optically
thick cloud, and vice versa. There is only an upper limit to dp,
which is a result of the lack of vertical sensitivity given the
constant-with-pressure abundance distributions. The posterior
distribution for O2 becomes a lower limit instead of a
constraint, as in Model III. Surface gravity is less precisely
and accurately constrained compared to the previous, less
complex renditions of the model.
For optically thin clouds, we expect to better constrain

surface albedo; however, we do not consider this scenario in
our study. We examined instead the performance of a
completely cloud-free model on data generated with our
cloudy model. We find that while the model can fit the data
and return accurate estimates of, e.g., the mixing ratios, we get
inaccurate estimates of the surface albedo and pressure. These
two parameters are biased, with lower surface pressure paired
with higher surface albedo as the preferred configuration in the
cloud-free case. As a result, we move forward with utilizing our
cloudy forward model on our simulated data. However, we
note that in realistic cases where we do not know the true state
of a planet’s atmosphere, we could obtain complementary
information relating to the presence of clouds (e.g., variability)
such that we may choose the most appropriate forward model.

4. Results

We generate data sets for HabEx- and LUVOIR-like missions
(0.4–1.0 μm at R=70 and140) at S/N=5, 10, 15, and 20
and for the WFIRST rendezvous scenario (two photometric

Figure 7. Posterior distributions of Model I from Table 3, where we fix all
parameters but P0 and As. We retrieve on R=140, S/N=20 data with
wavelength-independent noise. Overplotted in light blue are the fiducial
parameter values. The 2D marginalized posterior distribution, used in
interpreting correlations, is overplotted with the 1σ, 2σ, and 3σ contours.
Above the 1D marginalized posterior for each parameter, we list the median
retrieved value with uncertainties that indicate the 68% confidence interval.
Dashed lines (left to right) mark the 16%, 50%, and 84% quantiles.

Figure 6. Scaling of S/N with wavelength for WFIRST rendezvous, R=70,
and R=140 cases. TheWFIRST curve is normalized to unity at 600nm, while
the R=70 and 140 curves are normalized to unity at 550nm, following our
definition of simulation S/N at these respective wavelengths. Also shown is the
wavelength-dependent detector quantum efficiency (QE) that we adopt.

Table 3
Four Cumulative Models for Retrieval Validation, as Described in Section 3

Model Variant Retrieved Parameters Nparam

I Surface conditions P0, As 2
II + Bulk properties P0, As, g, Rp 4
III + Gas mixing ratios P0, As, g, Rp 7

H O2 , O2, O3

IV + Cloud properties P0, As, g, Rp 11
H O2 , O2, O3

pt, dp, τ, fc

Notes. See Table 1 for the corresponding definition and prior of each
parameter. Model IV represents the full suite of parameters and can serve as a
reference for the fixed parameters in Models I through III.
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points within 0.4–0.6 μm plus a spectrum of R=50 for
0.6–0.96 μm), also at S/N=5, 10, 15, and 20. In all cases, we
use the noise model to generate the uncertainties expected for
high-contrast imaging instead of the wavelength-independent
noise for the validations in the previous section. As Section 2.4
describes, the S/N refers to the value at 0.55 μm for R=70
and 140 and at 0.6 μm forWFIRST. We record the specific runs
in Table 2. In place of showing the correlations for all
parameters for all cases, we refer to Figure 10, which represents
the ideal case correlations among the parameter posteriors. We
only show the posterior probability distributions themselves to
better highlight any trends with respect to S/N and/or R. We
grouped the posteriors in terms of, first, bulk atmospheric and
planetary parameters (P0, Rp, g, As), then cloud parameters (pt,
dp, τ, fc), and finally gases (H O2 , O3, O2). For each case,
emcee was run with 16 MCMC chains (walkers) per
parameter for at least 12,000 steps, the last 5000 of which
are used to determine the posterior distributions. From those
5000 steps, we randomly selected 1000 sets of parameters to
calculate their corresponding high-resolution spectra. These
spectra are plotted with the data to show the 1σ, 2σ, and
median fits.

4.1. Results for R=70 and140 Simulated Data

For both R=70 and R=140, we simulated data sets at
S/N=5, 10, 15, and 20. Table 4 lists the median and 1σ

values of all retrieved parameters for each S/N at R=70.
Figure 11 shows the marginalized posterior distributions for the
model parameters for all S/N cases for R=70, plotted with
the fiducial or “truth” values. Table 5 lists the median and 1σ
values of all retrieved parameters for each S/N at R=140.
Figure 12 shows the posterior distributions for R=140 for the
model parameters for all S/N cases compared against their
input values. Figure 14 shows the corresponding spread in fits
and the median fit to the data for each S/N for both resolutions.

4.2. Results for WFIRST Rendezvous Simulated Data

For the WFIRST rendezvous scenario, we utilized the Design
Cycle 7 instrument parameters to set the locations of the two
photometric points and the range and resolution of the
spectrometer (R= 50; see Table 2). Because of this particular
setup, we reference the S/Ns in our grid (5, 10, 15, 20) at
600nm and assign the photometric points the same S/N as at
600nm. Table 6 lists the median and 1σ values of all retrieved
parameters for each S/N variant. Figure 13 presents the
posterior distributions for the fourWFIRST rendezvous variants
with respect to the input values. Figure 14 shows the spread in
fits and median fit to the data for each variant.

5. Discussion

The results from our retrieval analyses enable us to identify
the S/N required at a given spectral resolution to constrain key

Figure 8. Posterior distributions of Model II from Table 3, where we fix all parameters except for P0, As, g, and Rp. We retrieve on R=140, S/N=20 data with
wavelength-independent noise. Overplotted in light blue are the fiducial parameter values. The 2D marginalized posterior distribution, used in interpreting correlations,
is overplotted with the 1σ, 2σ, and 3σ contours. Above the 1D marginalized posterior for each parameter, we list the median retrieved value with uncertainties that
indicate the 68% confidence interval. Dashed lines (left to right) mark the 16%, 50%, and 84% quantiles.
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planetary and atmospheric quantities. These findings have
important implications for the development of future space-
based direct-imaging missions. We discuss these ideas below
and also touch on impacts of certain model assumptions and
ideas for future research directions.

In what follows, we define a “weak detection” for a given
parameter as having a posterior distribution that has a marked
peak but that also has a substantial tail toward extreme values

(indicating that, e.g., for a gas, we could not definitively state
that the gas is present in the atmosphere). A “detection” implies
a peaked posterior without tails toward extreme values but
whose 1σ width is larger than an order of magnitude. We use
the term “constraint” to indicate a detection whose posterior
distribution has a 1σ width smaller than an order of magnitude.
A nondetection would be indicated by a flat posterior
distribution across the entire (or nearly entire) prior range.

Figure 9. Posterior distributions of Model III from Table 3, where we retrieve P0, As, g, Rp, H O2 , O2, and O3. We retrieve on R=140, S/N=20 data with
wavelength-independent noise. Overplotted in light blue are the fiducial parameter values. The 2D marginalized posterior distribution, used in interpreting correlations,
is overplotted with the 1σ, 2σ, and 3σ contours. Above the 1D marginalized posterior for each parameter, we list the median retrieved value with uncertainties that
indicate the 68% confidence interval. Dashed lines (left to right) mark the 16%, 50%, and 84% quantiles.
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For planetary radius, which is not retrieved in logarithmic
space, we distinguish between a “detection” and a “constraint”
when the 1σ uncertainties are small enough to firmly place the
planet in the Earth/super-Earth regime (i.e., with a radius
below 1.5 R⊕; Rogers 2015; Chen & Kipping 2017). A visual
summary of weak detections, detections, and constraints as a
function of S/N for our different observing scenarios and a
selection of key parameters is given in Tables 7–9.

5.1. Influence of S/N on Inferred Properties

For R=70 at S/N=5, Figure 11 shows that there is only a
weak detection of P0 and a detection of Rp, which merely
suggests that the planet has an atmosphere and is not a giant
planet. As S/N increases to 10, the O3posterior distribution
has a weak peak near the fiducial value, and the gas is only
weakly detected. Once the S/N is equal to 15, we weakly
detect H O2 , O3, and O2. At an S/N of 20, it is possible to detect

Figure 10. Posterior distributions of Model IV, or the complete model, from Table 3. We retrieve for 11 parameters: P0, As, g, Rp, H O2 , O2, O3, pt, dp, τ, and fc. We
retrieve on R=140, S/N=20 data with wavelength-independent noise. Overplotted in light blue are the fiducial parameter values. The 2D marginalized posterior
distribution, used in interpreting correlations, is overplotted with the 1σ, 2σ, and 3σ contours. Above the 1D marginalized posterior for each parameter, we list the
median retrieved value with uncertainties that indicate the 68% confidence interval. Dashed lines (left to right) mark the 16%, 50%, and 84% quantiles.
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each of H O2 , O3, and O2. At this S/N, the oxygen mixing ratio
is estimated to be above roughly 10−3, indicating that we are
unable to determine if O2 is a major atmospheric constituent
(i.e., present at the 1% level or more). Gravity (and, thus,
planetary mass) remains undetected at all S/Ns, similar to the
findings of Lupu et al. (2016). The surface albedo is
unconstrained (or worse) at all S/Ns but shows a weak bias
toward a higher value of As≈0.3 ( Alog 0.5s » - ) at the
highest S/Ns, which is likely due to the relatively large error
bars at red wavelengths (driven primarily by low detector
quantum efficiency) where we have the most sensitivity to the
surface. We are able to get weak detections of τ and fc, which
are shown in Figure 10 to be correlated. Yet with these
posteriors, we cannot rule out scenarios without cloud cover.
We note that the drop-off in the posteriors of pt and dp at higher
pressure values likely result from the limiting conditions that
the cloud base cannot extend below the surface pressure and
the upper limit of the P0 prior. The improved S/N leads to a
posterior more concentrated around the true value for pt, dp,
and Rp. For improved constraints on cloud properties, it may be
beneficial to observe time variability with photometry (e.g.,
Ford et al. 2001) or use polarimetry (e.g., Rossi & Stam 2017).

At a higher spectral resolution (R= 140), the improvement
in detections and constraints begins at a lower S/N, as
illustrated by Figure 12. Gravity remains undetected for all
S/Ns. At an S/N equal to 5, P0 and Rp have a weak detection
and a detection, respectively. At S/N=10, it is possible to
detect H O2 , O3, and O2. As with the R=70 case, the surface
albedo is unconstrained (or worse) at all S/Ns, and, at the
highest S/Ns, the model is biased toward As≈0.3 (as with
R= 70). Moving to S/N=15 adds a constraint to Rp, P0, and
O3, as well as weak detections of cloud parameters. Increasing
the S/N to 20 does not dramatically change the posterior
distributions, although the posteriors for H O2 and O2 become
narrow enough to offer constraints. Here the constraint on O2

suggests it is a major constituent in the atmosphere. In spite of
the generous S/N, though, the 1σ uncertainties on the gas
mixing ratios are not more precise than roughly an order of
magnitude (see Table 5).

Considering both R=140 and R=70, we see that
S/N=5 data offer very little information about the planetary
atmosphere. In the case of R=140, S/N=10 data offer
detections but no constraints, and S/N=20 data are required
to constrain all included gas species. In other words, the
conclusions we would draw about the planet (e.g., the amount

of gases, the bulk and cloud properties) improve significantly
between S/N=10 and 20. With R=70, the boost from
S/N=10 to 15 provides weak detections of key atmospheric
and surface parameters, and S/N=20 data offer detections but
few constraints (i.e., except on planetary radius).
For the WFIRST rendezvous data sets, we are able to infer

very little information at an S/N of 5 or 10 except for weak
detection of surface pressure and a detection of the planetary
radius. All gases remain undetected at these S/Ns. The
posterior distributions for most parameters do not vary much
as S/N improves, although there are weak detections of cloud
optical depth and fractional coverage at the highest S/Ns. Like
all previous cases, we do not detect the surface gravity. At
S/N=15 and 20, the detection of fc is unable to rule out
scenarios with little cloud cover. To obtain weak detections of
the atmospheric gases, we require an S/N of 20, but even here,
the posteriors have tails that extend to near-zero mixing ratios.
To compare the performance of a WFIRST rendezvous

scenario against HabEx/LUVOIR scenarios at R=70 and 140,
we plot the posterior distributions of the parameters for the
S/N=10 results from the WFIRST rendezvous and R=70
and 140 in Figure 15. While this comparison sheds light on the
corresponding trade-off in terms of parameter estimation for the
same S/N, these cases do not represent equal integration times,
which scale with resolution and S/N. If the dominant noise
source does not depend on resolution (e.g., detector noise), the
cases of R=140 at S/N=10, R=70 at S/N=20, and
R=50 at S/N=28 would be roughly equal in integration
time. However, if the dominant noise source does depend on
resolution (e.g., exozodiacal dust), the cases of R=140 at
S/N=10, R=70 at S/N=14, and R=50 at S/N=17
would have roughly equivalent integration times. Tables 7–9
allow approximate comparisons of these different scenarios,
excluding a WFIRST rendezvous scenario at high S/N=28
that we have not considered.
From Figure 15, we see that the performance of the WFIRST

rendezvous retrieval is similar to that of R=70 at S/N=10.
The noticeable difference is a weak detection of O3 with
R=70. Because we adopt the photometric setup from
WFIRST Design Cycle 7 through the shorter wavelengths, the
data do not provide complete spectroscopic coverage across the
significant O3 feature from 0.5 to 0.7 μm, as in the case of
HabEx/LUVOIR simulated data. Figure 5 shows the sampling
of the forward-model spectrum for the three types of data sets
we considered. We compare the spectral fits in Figure 14 and

Table 4
R=70 Retrieval Results, with Median Value and 1σ Uncertainties of the

Parameters

Parameter Input S/N=5 S/N=10 S/N=15 S/N=20

log H O2 −2.52 5.07 1.92
2.34- -

+ 3.85 2.60
1.77- -

+ 3.12 1.71
0.97- -

+ 2.76 0.88
0.62- -

+

log O3 −6.15 7.55 1.46
1.49- -

+ 6.79 1.81
0.93- -

+ 6.37 0.84
0.55- -

+ 6.24 0.60
0.47- -

+

log O2 −0.68 5.12 3.23
3.25- -

+ 4.51 3.61
3.24- -

+ 1.86 3.99
1.29- -

+ 1.00 1.01
0.66- -

+

log P0 0.0 0.02 0.84
1.35

-
+ 0.03 0.70

0.87- -
+ 0.28 0.56

0.85
-
+ 0.25 0.49

0.56
-
+

Rp 1.0 1.23 0.58
1.54

-
+ 1.33 0.52

1.23
-
+ 0.97 0.27

0.68
-
+ 0.98 0.25

0.44
-
+

glog 0.99 1.33 0.77
0.48

-
+ 1.48 0.68

0.38
-
+ 1.28 0.66

0.51
-
+ 1.24 0.69

0.55
-
+

Alog s −1.3 0.96 0.74
0.58- -

+ 1.05 0.59
0.55- -

+ 0.70 0.62
0.37- -

+ 0.63 0.46
0.29- -

+

plog t −0.22 1.14 0.61
0.97- -

+ 1.19 0.56
0.93- -

+ 0.92 0.71
0.86- -

+ 0.94 0.73
0.84- -

+

dplog −1.0 1.67 0.92
1.24- -

+ 1.71 0.91
1.18- -

+ 1.35 1.14
1.17- -

+ 1.43 1.06
1.11- -

+

log t 1.0 0.10 1.43
1.30

-
+ 0.21 1.48

1.23
-
+ 0.49 1.66

1.03
-
+ 0.61 1.66

0.93
-
+

flog c −0.3 1.43 1.07
0.99- -

+ 1.33 1.12
0.94- -

+ 0.93 1.32
0.71- -

+ 1.05 1.27
0.80- -

+

Table 5
R=140 Retrieval Results, with Median Value and 1σ Uncertainties of the

Parameters

Parameter Input S/N=5 S/N=10 S/N=15 S/N=20

log H O2 −2.52 4.56 2.35
2.14- -

+ 2.74 1.07
0.69- -

+ 2.61 0.65
0.47- -

+ 2.43 0.56
0.39- -

+

log O3 −6.15 7.36 1.65
1.26- -

+ 6.26 0.68
0.53- -

+ 6.18 0.48
0.42- -

+ 6.03 0.48
0.34- -

+

log O2 −0.68 4.45 3.69
3.08- -

+ 1.06 1.43
0.76- -

+ 0.76 0.79
0.51- -

+ 0.60 0.59
0.43- -

+

log P0 0.0 0.07 0.84
1.01

-
+ 0.20 0.49

0.72
-
+ 0.12 0.36

0.49
-
+ 0.07 0.31

0.39
-
+

Rp 1.0 1.25 0.52
1.16

-
+ 1.01 0.28

0.60
-
+ 0.99 0.23

0.42
-
+ 1.05 0.27

0.42
-
+

glog 0.99 1.36 0.74
0.46

-
+ 1.31 0.77

0.49
-
+ 1.14 0.65

0.56
-
+ 1.20 0.64

0.50
-
+

Alog s −1.3 0.98 0.60
0.54- -

+ 0.67 0.50
0.32- -

+ 0.68 0.44
0.29- -

+ 0.79 0.69
0.34- -

+

plog t −0.22 1.23 0.55
1.03- -

+ 0.96 0.71
0.80- -

+ 0.79 0.82
0.70- -

+ 0.66 0.85
0.53- -

+

dplog −1.0 1.72 0.91
1.25- -

+ 1.43 1.09
1.13- -

+ 1.55 1.00
1.10- -

+ 1.49 0.98
1.00- -

+

log t 1.0 0.18 1.49
1.31

-
+ 0.50 1.66

1.09
-
+ 0.61 1.61

0.98
-
+ 0.79 1.40

0.87
-
+

flog c −0.3 1.30 1.13
0.93- -

+ 1.31 1.21
0.94- -

+ 0.99 1.27
0.76- -

+ 0.76 1.26
0.54- -

+
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note the much wider spread in the possible fits for wavelengths
shorter than 0.6 μm for the WFIRST rendezvous versus R=70
or 140, which have continuous coverage in the full range. The
R=140, S/N=10 data set was able to offer detections of all
atmospheric gases, setting it apart from the other two. We
stress, however, that constraints were only found at S/N=20
and R=140.

5.2. Considering Multiple Noise Instances

Our parameter estimations are likely to be optimistic as a
consequence of our adoption of nonrandomized spectral data
points in our faux observations. Thus, the requisite S/Ns for
detection detailed above should be seen as lower limits.
Ultimately, our decision to use nonrandomized data points
stemmed from computational limitations (preventing us from
running large numbers of randomized faux observations for
each of our R–S/N pairs) and a desire to avoid the biases that
can occur from attempting to make inferences from retrievals

performed on a single randomized faux observation (Lupu
et al. 2016).
However, we deemed it necessary to investigate the

consistency of our findings with respect to different noise
instances. To work within our computational restrictions, we
realized that cases such as R=70 with S/N=5 yielded little
detection information for any parameter, even in the ideal
scenario of nonrandomized data. We then decided to focus
on two “threshold” cases based on the results from the
nonrandomized data: R=140 with S/N=10 and R=70
with S/N=15. We ran 10 noise instances of these two cases
where it is likely the optimistic nonrandomized data make the
difference between detection and constraint for several
parameters (see Tables 7 and 8).
Each noise instance is run for at least 10,000 steps in

emcee. Figure 16 shows all the individual posteriors for the
gas mixing ratios from each noise instance for R=70,
S/N=15. We highlight the posteriors from one “outlier”

Figure 11. Comparing 1D marginalized posterior distributions for all parameters for all S/N cases of R=70. See Table 4 for the corresponding median retrieved
value with uncertainties that indicates the 68% confidence interval. The overplotted dashed line represents the fiducial values from Table 1.
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case where there is no oxygen detection. The corresponding set
of data points is shown as well. This highlights the fact that
single noise instances can mislead our interpretation and the
benefit of having many noise instances run to obtain a more
comprehensive understanding of the state of an atmosphere.
To summarize the noise instance results, we concatenate

samples from the last 1000 steps in each noise instance and
construct an averaged set of posteriors. We are able to do this
because the noise instances are equally likely, having been
drawn in the same manner from a Gaussian with set parameters
(i.e., the same S/N as the standard deviation). In Figure 17, we
plot the combined posteriors of the 10 noise instances of
R=70, S/N=15 and compare them to the posterior from the
last 5000 steps of the nonrandomized data case. We illustrate
the same comparison for R=140, S/N=10 in Figure 18. We
overplot the truth values, as well as the 68% confidence interval
and median value, for each parameter from the combined
noise-instances posterior and the nonrandomized data posterior.

Figure 12. Comparing 1D marginalized posterior distributions for all parameters for all S/N cases of R=140. See Table 5 for the corresponding median retrieved
value with uncertainties that indicates the 68% confidence interval. The overplotted dashed line represents the fiducial values from Table 1.

Table 6
WFIRST Rendezvous Retrieval Results, with Median Value and 1σ

Uncertainties of the Parameters

Parameter Input S/N=5 S/N=10 S/N=15 S/N=20

log H O2 −2.52 4.94 2.05
2.35- -

+ 4.89 2.11
2.48- -

+ 4.03 2.52
1.87- -

+ 3.11 1.71
1.17- -

+

log P0 0.0 0.16 0.80
1.32- -

+ 0.19 0.71
1.03- -

+ 0.03 0.74
1.16

-
+ 0.45 0.85

1.01
-
+

log O3 −6.15 7.66 1.59
1.65- -

+ 7.53 1.66
1.54- -

+ 7.16 1.66
1.19- -

+ 6.80 1.30
0.94- -

+

log O2 −0.68 5.05 3.39
3.26- -

+ 4.89 3.54
3.43- -

+ 3.43 4.41
2.50- -

+ 2.26 3.88
1.71- -

+

log P0 0.0 0.16 0.80
1.32- -

+ 0.19 0.71
1.03- -

+ 0.03 0.74
1.16

-
+ 0.45 0.85

1.01
-
+

Rp 1.0 1.13 0.50
1.60

-
+ 1.13 0.48

1.27
-
+ 1.02 0.38

1.10
-
+ 0.80 0.19

0.81
-
+

glog 0.99 1.42 0.82
0.42

-
+ 1.45 0.75

0.41
-
+ 1.41 0.83

0.43
-
+ 1.26 0.83

0.52
-
+

Alog s −1.3 0.89 0.74
0.63- -

+ 0.84 0.70
0.56- -

+ 0.95 0.68
0.64- -

+ 0.76 0.79
0.53- -

+

plog t −0.22 1.26 0.52
0.98- -

+ 1.24 0.55
0.83- -

+ 1.23 0.57
0.84- -

+ 0.84 0.73
0.89- -

+

dplog −1.0 1.75 0.87
1.16- -

+ 1.70 0.87
1.12- -

+ 1.46 1.06
1.14- -

+ 1.49 1.03
1.49- -

+

log t 1.0 0.03 1.39
1.33

-
+ 0.05 1.40

1.42
-
+ 0.61 1.55

0.94
-
+ 0.99 1.44

0.73
-
+

flog c −0.3 1.41 1.07
0.96- -

+ 1.42 1.07
1.00- -

+ 0.82 1.28
0.60- -

+ 0.58 0.97
0.41- -

+
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For all parameters in both the R=70 and R=140 cases,
we find that the average posterior from the 10 noise instances
agrees with the posterior from the nonrandomized data set
qualitatively. Their medians and 68% confidence interval
ranges are also similar with significant overlap. The overall
conclusions we can draw from the average posteriors do not
appear to differ much from those using the nonrandomized data
set posteriors.

5.3. Implications for Future Direct-imaging Missions

Future space-based direct-imaging missions will have a
diversity of goals for exoplanet studies and will likely
emphasize the detection and characterization of Earth-like
exoplanets. For the detection of oxygen and ozone—which are
key biosignature gases—in the atmospheres of Earth twins, our
results indicate that spectra at a minimum characteristic S/N of

10 will suffice if at R=140, while data at an S/N of at least
15–20 would be needed at R=70. For a WFIRST rendezvous-
like observing setup, these gases would only be weakly
detected, even at an S/N of 20. Methane, which is another
important biosignature gas, has no strong signatures in the
visible wavelength range for the modern Earth, so we did not
consider detection of this gas. Thus, we could not use our
simulated data and retrievals to argue for detections of
atmospheric chemical disequilibrium (Sagan et al. 1993;
Krissansen-Totton et al. 2016).
Key habitability indicators include atmospheric water vapor

and surface pressure. Detecting the former requires an S/N of
15–20 at R=70 but only an S/N of 10 at R=140. Surface
pressure can be constrained to within an order of magnitude for
S/N15 at R=140, although the overall lack of temperature
information in these reflected-light spectra would make it
impossible to use pressure/temperature data to argue for

Figure 13. Comparing 1D marginalized posterior distributions for all parameters for all S/N cases of a WFIRST rendezvous scenario. See Table 6 for the
corresponding median retrieved value with uncertainties that indicates the 68% confidence interval. The overplotted dashed line represents the fiducial values from
Table 1.
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habitability (Robinson 2017). Surface temperature information
may then need to come from climate-modeling investigations
that are constrained by retrieved gas mixing ratios.

For all of our observing setups, the data yield detections of,
and in some cases constraints on, the planetary radius. Except
at an S/N of 20 for R=70 or S/N>15 for R=140, the
posterior distributions are not well enough constrained to
distinguish an Earth/super-Earth (Rp<1.5 R⊕) from a mini-
Neptune based on size alone, although the data do rule out
planetary sizes larger than Neptune. Additional atmospheric
information (e.g., composition) could potentially be used to
help distinguish between terrestrial planets and mini-Neptunes.

These findings are consistent with the gas giant–focused work
of Nayak et al. (2017), who noted that observations at multiple
phase angles can also help to better constrain planetary size.
Our overall lack of surface gravity constraints, paired with the
weak constraints on planet size, implies that we do not have a
constraint on the planetary mass. Follow-up (or precursor)
radial velocity observations (or, potentially, astrometric
observations) could offer additional constraints on planet mass.
We can make rough comparisons of our R–S/N results to

those of Brandt & Spiegel (2014), who used minimally
parametric models to investigate detections of O2 and H O2

for Earth twins. These comparisons are not direct, however, as
Brandt & Spiegel (2014) were fitting for fewer parameters (8
versus our 11) and also only assumed that the S/N was
proportional to planetary reflectance (versus our more compli-
cated scaling, as shown in Figure 6). For O2, Brandt & Spiegel
(2014) found R=150 and S/N=6 for a 90% detection
probability, which is consistent with our R=140 posteriors
moving from a nondetection at S/N=5 to a detection at
S/N=10. When investigating H O2 , Brandt & Spiegel (2014)
found R=40 and S/N=7.5 or R=150 and S/N=3.3 for a
90% detection probability. Using Figure 6 to scale our S/Ns to
890nm (i.e., to the continuum just shortward of the 950 nm
water vapor band), at R=50, we only find a weak detection of
H O2 for S/N890nm =10, and at R=140, we transition from a
water vapor nondetection to a detection between an S/N890nm

of 2.5–5. Taken all together, these comparisons indicate that we
agree with Brandt & Spiegel (2014) at higher spectral
resolution (R= 140–150) but that detection of H O2 at lower

Figure 14. Spectra generated with 1000 randomly drawn sets of parameters sampled with the retrievals plotted with (left) R=70 data for S/N=5, 10, 15, and 20;
(middle) R=140 data for S/N=5, 10, 15, and 20; and (right) WFIRST rendezvous data at S/N=5, 10, 15, and 20. Here “1” and “2” mark the span of the WFIRST
Design Cycle 7 filters (see Table 2). Lighter contours (green) represent 2σ fits, while darker contours (blue) represent 1σ fits. The solid line represents the median fit.

Table 7
R=70: Strength of Detection for a Set of Key Parameters as a Function of

S/N

Parameter S/N=5 S/N=10 S/N=15 S/N=20

H O2 − − W D
O3 − W W D
O2 − − W D
P0 W W W D
Rp D D D C

Note. Weak detection (“W”) corresponds to a posterior distribution with a
marked peak but also a substantial tail toward extreme values. Detection (“D”)
refers to a peaked posterior without tails toward extreme values but with a 1σ
width larger than an order of magnitude. Constraint (“C”) is defined as a
peaked posterior distribution with a 1σ width less than an order of magnitude.
Nondetections, or flat posteriors across the entire (or nearly entire) prior range,
are marked with “−.”
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spectral resolution (R= 50) will likely require higher S/Ns
than originally indicated.
The discussion above emphasizes mere detections, not

constraints (which, again, we define as having peaked
posterior distributions with 1σ widths less than an order of
magnitude). While uncertain, we anticipate that characteriza-
tion of climate, habitability, and life likely require con-
straints, not simple detections. Here, as is shown in Table 8,
only R=140 and S/N = 20 observations offer the
appropriate constraints. Thus, future space-based high-
contrast imaging missions with goals of characterizing
Earth-like planetary environments are likely to need to
achieve R=140 and S/N=20 observations (or better). Of
course, combining near-infrared capabilities, which would
provide access to additional gas absorption bands, may help
loosen these requirements.

Figure 15. Comparing the posteriors for all parameters for S/N=10 cases of the WFIRST rendezvous and R=70 and140. The overplotted dashed line represents
the fiducial values from Table 1.

Table 8
R=140: Strength of Detection for a Set of Key Parameters as a Function of

S/N

Parameter S/N=5 S/N=10 S/N=15 S/N=20

H O2 − D D C
O3 − D C C
O2 − D D C
P0 W D C C
Rp D D C C

Note. Weak detection (“W”) corresponds to a posterior distribution with a
marked peak but also a substantial tail toward extreme values. Detection (“D”)
refers to a peaked posterior without tails toward extreme values but with a 1σ
width larger than an order of magnitude. Constraint (“C”) is defined as a
peaked posterior distribution with a 1σ width less than an order of magnitude.
Nondetections, or flat posteriors across the entire (or nearly entire) prior range,
are marked with “−.”
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5.4. Impacts of Model Assumptions

Several key assumptions adopted in this study warrant
further comment. First, as noted earlier, we do not retrieve on
planetary phase angle and planet–star distance, both of which
influence the planet-to-star flux ratio. Thus, in effect, we are
assuming that the planetary system has been revisited multiple
times for photometric and astrometric measurements, such that
the planetary orbit is reasonably well-constrained (i.e., that the
orbital distance and phase angle are not the dominant sources
of uncertainty when interpreting the observed planet-to-star
flux ratio spectrum). If the orbit is not well-constrained, Nayak
et al. (2017) showed that strong correlations can exist between
the retrieved phase angle and the planet radius.

Second, we have assumed detector-dominated noise and a
quantum efficiency appropriate for the WFIRST/CGI for all of
our observational setups. While this is likely a fair assumption
for our WFIRST rendezvous studies, it is likely that detector
development will lead to major improvements in instrumenta-
tion for a HabEx/LUVOIR-like mission. Here the rapid

decrease into the red due to detector quantum efficiency may
not be as dramatic, implying that spectra would have relatively
more information content at red wavelengths as compared to
the present study. Furthermore, a HabEx/LUVOIR-like mission
may no longer be in the detector-dominated noise regime. In
the limit of noise dominated by astrophysical sources (e.g.,
exozodiacal light or stellar leakage), the S/N only varies
as q B l .
Finally, we adopt a relatively simple parameterization of

cloud 3D structure. Specifically, we allow for only a single
cloud deck in the atmosphere, and we then permit these clouds
to have some fractional coverage over the entire planet. This
parameterization of fractional cloudiness implies uniform
latitudinal and longitudinal distribution of patchy clouds. In
reality, clouds on Earth have a complex distribution in altitude,
latitude, and longitude (Stubenrauch et al. 2013), and variations
in time also have an observational impact (Cowan et al. 2009;
Cowan & Fujii 2017). However, given the overall inability of
our retrievals to constrain cloud parameters (at least at the S/Ns

Figure 16. The top left panel shows one of the 10 noise instances we retrieved on for R=70, S/N=15 data, plotted along with the forward-model spectrum at
R∼70. The remaining three panels show the gas mixing ratio posteriors (H O2 , O3, O2) of all of the 10 noise instances of R=70, S/N=15. In addition, we show
the corresponding posterior distributions from the nonrandomized data set (seen originally in Figure 11) for comparison. The set of posteriors that corresponds to the
noise instance in the top left panel is the set of bolded distributions. The vertical dashed lines represent the input values of the parameters.
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investigated here; see also Lupu et al. 2016; Nayak et al. 2017),
it seems challenging for future space-based exoplanet char-
acterization missions to detect (or constrain) more complex
cloud distributions with the types of observations studied here
and data of similar quality.

5.5. Future Work

Our current forward model is able to include both CO2 and
CH4, although we did not retrieve on these gases in the current
study due to their overall lack of strong features in the visible
wavelength range for modern Earth. However, these species do
have stronger features in the near-infrared wavelength range.
As both of the HabEx and LUVOIR concepts are considering
near-infrared capabilities, it will be essential to extend our
current studies to longer wavelengths and investigate whether
or not constraints on additional gases (i.e., beyond water,
oxygen, and ozone) can be achieved at these wavelengths.

Additionally, given the likely huge diversity of exoplanets
that will be discovered by future missions (and that have
already been identified and studied by Kepler, Hubble, and
Spitzer), it will be necessary to extend our parameter estimation
studies to include a wider range of worlds. Both super-Earths
and mini-Neptunes are more favorable targets for a WFIRST
rendezvous mission and may also be easier targets for HabEx/
LUVOIR-like missions. Our forward model is already capable
of simulating these types of worlds, and we anticipate
emphasizing a variety of exoplanet types in future studies.
Such future studies may also include retrievals on planetary
phase angle, which would be relevant to observing scenarios
where the planetary orbit is poorly constrained.

6. Summary

We have developed a retrieval framework for constraining
atmospheric properties of an Earth-like exoplanet observed

Figure 17. Combined posterior distributions from 10 noise instances of R=70, S/N=15 compared to the posteriors from the nonrandomized data set (see also
Figure 11). The diamond represents the median value of each combined posterior, while the circle is the median of the nonrandomized data set posterior. Each median
is plotted along with the 68% confidence interval from the same distribution. The vertical dashed lines represent the input values of the parameters.
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with reflected-light spectroscopy spanning the visible range
(0.4–1.0 μm). We have upgraded an existing, well-tested
albedo model to generate high-resolution geometric albedo
spectra used to simulate data at resolutions and quality relevant
to future telescopes, such as the HabEx and LUVOIR mission
concepts. We combined our albedo model with Bayesian
inference techniques and applied MCMC sampling to perform
parameter estimation. The data we considered were for
WFIRST paired with a starshade (i.e., the rendezvous scenario),
R=70, and R=140 at S/N=5, 10, 15, and 20. We
validated our forward model, and we demonstrated the
successful application of our retrieval approach by gradually
adding complexity to our inverse analyses.

Following work by Lupu et al. (2016) and Nayak et al.
(2017), who constructed a retrieval framework for gas giants in
reflected light, we made several modifications to the albedo
model featured in these previous studies. Our model has a

reflective surface; absorption due to water vapor, oxygen, and
ozone; Rayleigh scattering from nitrogen and other key gases;
pressure-dependent opacities; an adaptive pressure grid; and a
single-layer water vapor cloud layer with fractional cloudiness.
We performed our retrievals with the goal of estimating our
ability to detect and constrain the atmosphere of an Earth twin.
We found that R=70, S/N=15 data allowed us to weakly
detect surface pressure, as well as water vapor, ozone, and
oxygen. At R=140, we found that S/N=10 was needed to
more firmly detect these parameters. At R=140, an S/N of 20
was needed to constrain key planetary parameters, and R=70
data at this S/N offered extremely few constraints. A WFIRST
rendezvous scenario, with its photometric points and lower-
resolution spectrum (R= 50), is only able to offer limited
diagnostic information. For example, at S/N=10, we only
weakly detect and detect surface pressure and planetary radius,
respectively. To weakly detect the gases, WFIRST rendezvous

Figure 18. Combined posterior distributions from 10 noise instances of R=140, S/N=10 compared to the posteriors from the nonrandomized data set (see also
Figure 12). The diamond represents the median value of each combined posterior, while the circle is the median of the nonrandomized data set posterior. Each median
is plotted along with the 68% confidence interval from the same distribution. The vertical dashed lines represent the input values of the parameters.
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data needed to be at least S/N=20. Throughout our runs, we
find that we are unable to accurately constrain surface albedo or
place estimates on the surface gravity, although we can
straightforwardly rule out planetary sizes above roughly the
radius of Uranus or Neptune.

Our findings demonstrate that direct imaging of Earth-like
exoplanets in reflected light offers a promising path forward for
detecting and constraining atmospheric biosignature gases.
Instrument spectral resolution for future missions strongly
impacts the requisite S/Ns for detection and characterization,
and this must be taken into consideration during mission design.
Thus, the scientific yield of future space-based exoplanet direct-
imaging missions can only be maximized by simultaneously
considering mission characterization goals, integration time
constraints, and instrument spectral performance.
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