Sagan Summer School 2019

Early Earth Atmosphere Kevin Zahnle NASA Ames Research Center

Topics

What Earth is made of provenence, timing of volatiles and atmophiles (what are atmophiles?)

Impact processing of atmospheres creation and photochemical evolution of Urey-Miller atms (what are mineral buffers?)

A little bit of Xe and Hydrogen escape, if I talk fast

Goldschmidt's (1937) geochemical classification of the elements:

siderophile – "iron-loving." refers to elements that live in cores

lithophile – "rock-loving." refers to elements that live in mantles. aka **oxyphile**. These elements make refractory oxides.

chalcophile – "sulfur-loving." refers to elements consigned to hell. a lot of these elements are geochemical volatile

atmophile – "air-loving." not widely used, but should be. aka **xenophile**

biophile – Who knew? I've never seen it used, but it sure seems ready-made for astrobiology

Most elements can be placed in more than one category

Another axis is volatility

distance from Sun

distance from Sun

Earth did not gravitationally capture its atmophiles from the Solar Nebula

The Solar N/Ne ratio is unity The N/Ne ratio of Earth is 10⁵ Earth did not gravitationally capture its atmophiles from the Solar Nebula

The Solar N/Ne ratio is unity The N/Ne ratio of Earth is 10⁵

But wait, there's more:

Air Ne is not solar isotopically, it is meteoritic There is a small amount of isotopically solar Ne in the mantle The N/(solar Ne) ratio of Earth is 10⁷

Conclusion: Earth accreted 10⁻⁷ of its N and H directly from the nebula

Earth did not gravitationally capture its atmophiles from the Solar Nebula

The Solar N/Ne ratio is unity The N/Ne ratio of Earth is 10⁵

But wait, there's more:

Air Ne is not solar isotopically, it is meteoritic There is a small amount of isotopically solar Ne in the mantle The N/(solar Ne) ratio of Earth is 10⁷

Conclusion: Earth accreted 10⁻⁷ of its N and H directly from the nebula

This is the foundation of standard gas-free N-body accretion models, as established by Wetherill

A B C Geochemical Model for Earth e.g. Wänke, Ringwood ca 1979-1990s

HSEs and the Late Veneer I

The **H**ighly **S**iderophile **E**lements (HSEs) [also known as **P**latinum-**G**roup-**E**lements, PGEs]

The HSEs are 7 elements **Ru**, **Rh**, **Pd**, **Os**, **Ir**, **Pr**, **Au** that partition very strongly into metallic phases.

They are found in Earth's mantle at ~0.5% of their cosmic (chondritic, solar) abundances.

The implication is that they were stranded there by a late impact or impacts.

Component C in the ABC models is determined by this 0.5% abundance.

HSEs and the Late Veneer II

In historic late veneer models, Component C is presumed to resemble the most atmophile-rich carbonaceous chondritic material.

With this assumption, Component C delivers a rough match to the H_2O_2 , CO_2 , and N_2 reservoirs of Earth (S, as well).

Neo-traditional late veneer e.g., Albarede 2009 or 2013

Meteorites are minutely classified by morphology, minerology, and other things.

broad-brush categories:

irons (cores of melted bodies)

achondrites (silicates from melted bodies)

chondrites (usually made of chondrules) ordinary enstatite (weird composition) carbonaceous (these can have lots of C and H₂O) The new thing is to divide meteorites by isotopes

- CC = carbononaceous like NC = Not CC-like
- I think of this new normal as slacker's reward
- It applies to planets as well as meteorites
- It's turned up some excellent surprises

Chromium Isotopes

Edward R. D. Scott¹⁽¹⁾, Alexander N. Krot¹, and Ian S. Sanders²⁽¹⁾ NC = Not CCCC =carbonaceous – like, 2 mostly NC = Not CC-like Æ, Oxygen Isotopes A6704 Ur_A Gap CM. Diff. meteorites Chondrites ▲3133 achondrites carbonaceous pallasites ordinary CC 5958 irons enstatite -5 other -1 0 2

Chromium Isotopes

Edward R. D. Scott¹, Alexander N. Krot¹, and Ian S. Sanders² Mind the Gap! NC = Not CCThe Gap may Oxygen Isotopes record the gap opened by A6704 Jupiter between Ur_A different parts of the Solar System CM Diff. meteorites Chondrites A3133 ▲ achondrites carbonaceous pallasites ordinary CC irons enstatite -5 other -1 2

Chromium Isotopes

Isotopic Dichotomy among Meteorites and Its Bearing on the Protoplanetary Disk

Earth, Moon, and ECs cluster at the border of the NC field

Two A' B' C' Isotopic Models for provenence of the Earth Dauphas 2017

A' $\vdash A'' \dashv$ the first 60%, including Nd \vdash B' \dashv the next 40%, excluding Nd ⊢ B'' − H the next 40%, including Nd \vdash C' \dashv the last 0.5% "late veneer" gap CM-types **OC-types** vpes CV-types -types **CI-types**

distance from Sun

Amount of Stuff

HSEs and the Late Veneer III

In the A'B'C' isotopic models, Component C' plays the same role as a source of HSEs to Earth.

But isotopically, Component C' resembles ECs, aubrites, and type IAB iron meteorites. None of these carry significant H₂O.*

* Interestingly, ECs are as rich as CCs in C, N, S, and heavy noble gases. Component C' could deliver all of Earth's C, N, S, Ar, Kr, and Xe.

Extreme closeup

EH and EL are enstatite chondrites. "Aubrites" are enstatie achondrites.

Oxygen isotopes (barely) distinguish Moon from Earth

1. Oxygen isotope composition of terrestrial and lunar samples shown

Greenwood et al 2018

Greenwood et al identify Theia with aubrites. If so, Earth water predates Theia impact

HSEs and the Late Veneer IV

Do the HSEs record a real event?

Ruthenium (0.5% in the mantle) isotopes carry a pure NC signature (Budde et al 2019).

Molybdenum – moderate siderophile, 2% in the mantle - carries a mixed CC-NC signature.

Budde et al interpret CC-Mo as the signature of Theia. If so, then the HSEs record a real post-Theia impact.

But... if Earth's CC-Mo predates the Theia impact, the HSEs could be from Theia, and Earth's predate the Theia impact.

HSEs and the Late Veneer V

Does an HSE actually matter?

Yes, it delivers enough iron to reduce 2 oceans of water to H₂

• This can leave the mantle reduced for a considerable time

But not directly, unless it is the last Earth-sterilizing impact.

The last sterilizing impact was probably more in the range of Vesta or Ceres

Asteroid Vesta

525 km diameter

Fegley 2009 Gases equilibrated to Enstatite **Chondrites** My quench temperatures

The QFI buffer at 100 bars is **Very** favorable $^{2500}\!for~CH_4$ and NH_3 Three **mineral buffers**, most relevant where rock > water + air

QFM aka **FMQ** – quartz-fayalite-magnetite $3 \operatorname{SiO}_2(s) + 2 \operatorname{Fe}_3O_4(s) \leftrightarrow 3 \operatorname{Fe}_2\operatorname{SiO}_4(s) + O_2(g)$ Relatively oxidizing. Approximates modern volcanic gases.

IW – iron-wüstite

2 Fe(s) + $O_2(g) \leftrightarrow 2$ FeO(s)

Reducing. Wüstite is typical of meteorite fusion crusts.

QFI – quartz-fayalite-iron SiO₂(s) + 2 Fe (s) + O₂(g) $\leftarrow \rightarrow$ Fe₂SiO₄(s) Strongly reducing. Approximates Ordinary and Enstatite chondrites.
Three **mineral buffers**, most relevant where rock > water + air

QFM at magma temperatures $H_2/H_2O = 1:50$ $CO/CO_2 = 1:30$

IW at magma temperatures $H_2/H_2O = 1:1$ $CO/CO_2 = 2:1$

QFI at magma temperatures $H_2/H_2O = 3:1$ $CO/CO_2 = 6:1$ but can easily prefer CH₄ A Model of Thermochemistry of atmospheric gases:

- 1 Compute equilibria with IW buffer until Fe is exhausted
 The buffer controls total oxygen in atmosphere
- 2 Thereafter compute equilibria with oxygen conserved
 - i.e., H₂O+CO+2CO₂ is constant
- 3 Cooling time is set by how long it takes to radiate away all the heat in the atmosphere
 - for an ocean-evaporating impact, this is 1-3x10³ yrs
- 4 Determine quench temperature using our own parameterization for brown dwarf H₂-H₂O-CH₄-CO kinetics
 - this is the quenched composition

Atmophile Inventories [bars]

	CO ₂	H ₂ O	N_2	³⁶ Ar
Venus Atm	92	0.003	3.3	3.0e-3
Earth Atm	0.004	0.01	0.78	3.3e-5
Earth Crust	50	270	0.3	
Earth Mantle	70-200	100-500	1	3e-7

100 bars of CO_2 presumes that previous H escape and mantle evolution have created an oxidized QFM mantle. And of course equilibrium with a global magma mantle...

Photochemical evolution of transient impact atmospheres:

- CH₄ photolysis makes organic hazes and tars (cf. Titan)
- CH₄, N₂ + UV makes HCN, nitriles
- CO_2 and $H_2O + UV$ oxidizes CH_4
- Hydrogen escapes and tars precipitate
- H₂O is mostly condensed in oceans. Wetter

atmospheres are more oxidizing (more CO₂ forms), less tarry

- the oceans are an infinite source of H_2O
- The model runs until the CH₄ is gone

Time After Impact [Myr]

Time After Impact [Myr]

Xenon preserves a record of ancient hydrogen escape

Xe is the only noble gas more easily ionized than H, and hence is the only noble gas that can escape as an ion Xe, Kr Isotopes normalized to Solar Wind and to ⁸⁴Kr

Xe, Kr Isotopes normalized to Solar Wind and to ⁸⁴Kr

Atomic Mass

140

130

Xenon

Xe, Kr Isotopes normalized to Solar Wind and to ⁸⁴Kr

140

Old xenon is not as strongly fractionated as Air

Review of Part II, told as a narrative example

History of a Maximum HSE EC or IAB type impact

History of a Maximum HSE EC or IAB type impact

Warm Hadean Steambath

Cold Hadean Iceball

Kerguelen – (future tropical paradise)

Comparison of several Solar System D/H ratios from C. Alexander 2011

Mineral buffers III

The mineral buffer sets pO₂

Equilibrium chemistry:

$$\frac{pH_2}{pH_2O} = K_{eq1} \times pO_2^{1/2} \qquad \frac{pCO}{pCO_2} = K_{eq2} \times pO_2^{1/2}$$

Methane goes as p^2

$$CO + 3H_2 \rightarrow CH_4 + H_2O$$

 $pCH_4 = K_{eq3} \times \frac{pH_2^3 \times pCO}{pH_2O} \propto p^2$

300-1000 bar pressures after ocean vaporizes favor methane

Ammonia also goes as p^2

Impact	Mass [g]	Size [km]	Steam [bars]	H2O→H2 [bars]	ejecta [km]	Number
Theia	6e26	6500	many	13000	2000	
HSE	3e25	2300	many	650	100	0-1
Pretty Big	3e24	1100	6000	65	10	1-2
Vesta	3e23	500	600	6.5	1	2-7
Mini	1e23	350	200	2.2	0.3	5-15
S. PA.	1e22	160	20	0.2	0.03	20-50

The isotopic nature of the Earth's accreting material through time

Nicolas Dauphas¹

Harold Urey (PNAS, 1952), in the course of founding modern planetary scioence, emphasized that the origin of life on Earth places an important boundary condition on Earth's early atmosphere.

Urey accepted Oparin's argument that the origin of life requires reducing conditions, although not overwhelmingly so, and would be greatly speeded by sunlight, surfaces, and even hydrogen escape.

Urey also pointed out that impacts would be reducing because the impacting bodies still had their iron, and would subject the atmosphere and oceans to iron rains that would favor the production of reduced atmospheres.

These ideas serve to introduce the subject

