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Topics
What Earth is made of

provenence, timing of volatiles and atmophiles
(what are atmophiles?)

Impact processing of atmospheres
creation and photochemical evolution of Urey-Miller atms

(what are mineral buffers?)

A little bit of Xe and Hydrogen escape, if I talk fast



Goldschmidt’s (1937) geochemical classification of the elements:

siderophile – “iron-loving.”  refers to elements that live in cores

lithophile – “rock-loving.”  refers to elements that live in mantles.
aka oxyphile.  These elements make refractory oxides.

chalcophile – “sulfur-loving.”  refers to elements consigned to hell.
a lot of these elements are geochemical volatile

atmophile – “air-loving.” not widely used, but should be.
aka xenophile

biophile – Who knew? I’ve never seen it used, but it sure seems
ready-made for astrobiology

Most elements can be placed in more than one category
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Fe, MgSiO3

H2O
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Another axis is volatility
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Earth did not gravitationally capture its atmophiles from the Solar 
Nebula

The Solar N/Ne ratio is unity
The N/Ne ratio of Earth is 105
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But wait, there’s more:

Air Ne is not solar isotopically, it is meteoritic

There is a small amount of isotopically solar Ne in the mantle

The N/(solar Ne) ratio of Earth is 107

Conclusion: Earth accreted 10-7 of its N and H directly from the nebula



Earth did not gravitationally capture its atmophiles from the Solar 

Nebula

The Solar N/Ne ratio is unity

The N/Ne ratio of Earth is 105

But wait, there’s more:

Air Ne is not solar isotopically, it is meteoritic

There is a small amount of isotopically solar Ne in the mantle

The N/(solar Ne) ratio of Earth is 107

Conclusion: Earth accreted 10-7 of its N and H directly from the nebula

This is the foundation of standard gas-free N-body accretion models,

as established by Wetherill
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A B C Geochemical Model for Earth
e.g. Wänke, Ringwood ca 1979-1990s
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HSEs and the Late Veneer I

The Highly Siderophile Elements (HSEs)
[also known as Platinum-Group-Elements, PGEs]

The HSEs are 7 elements Ru, Rh, Pd, Os, Ir, Pr, Au that partition very 
strongly into metallic phases.
They are found in Earth’s mantle at ~0.5% of their cosmic (chondritic, 
solar) abundances.
The implication is that they were stranded there by a late impact or 
impacts.

Component C in the ABC models is determined by this 0.5% abundance.
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HSEs and the Late Veneer II

In historic late veneer models, Component C is presumed to resemble 
the most atmophile-rich carbonaceous chondritic material.

With this assumption, Component C delivers a rough match to the H2O, 
CO2, and N2 reservoirs of Earth (S, as well).
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Meteorites are minutely classified by
morphology, minerology, and other things.

broad-brush categories:

irons (cores of melted bodies)

achondrites (silicates from melted bodies)

chondrites (usually made of chondrules)
ordinary 
enstatite (weird composition)
carbonaceous (these can have lots of C and H2O) 



The new thing is to divide meteorites by isotopes

CC = carbononaceous - like
NC = Not CC-like

I think of this new normal as slacker’s reward

It applies to planets as well as meteorites

It’s turned up some excellent surprises
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the Solar System
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HSEs and the Late Veneer III

In the A’B’C’ isotopic models, Component C’ plays the same role as a 
source of HSEs to Earth.

But isotopically, Component C’ resembles ECs, aubrites, and type IAB 
iron meteorites.  None of these carry signficant H2O.*

* Interestingly, ECs are as rich as CCs in C, N, S, and heavy noble gases.         
Component C’ could deliver all of Earth’s C, N, S, Ar, Kr, and Xe.
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Greenwood et al 2018

Extreme closeup

EH and EL are 
enstatite 

chondrites.
“Aubrites” are 

enstatie 
achondrites.

Oxygen isotopes
(barely) distinguish 

Moon from Earth

Greenwood et al identify Theia with aubrites.
If so, Earth water predates Theia impact
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CC Mo in Earth
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2019 Non-zero intercept!



HSEs and the Late Veneer IV

Do the HSEs record a real event?

Ruthenium (0.5% in the mantle) isotopes carry a pure NC signature 
(Budde et al 2019).

Molybdenum – moderate siderophile, 2% in the mantle - carries a 
mixed CC-NC signature.

Budde et al interpret CC-Mo as the signature of Theia.
If so, then the HSEs record a real post-Theia impact.

But... if Earth’s CC-Mo predates the Theia impact, the HSEs could be 
from Theia, and Earth’s predate the Theia impact. 
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HSEs and the Late Veneer V

Does an HSE actually matter?

Yes, it delivers enough iron to reduce 2 oceans of water to H2
• This can leave the mantle reduced for a considerable time

But not directly, unless it is the last Earth-sterilizing impact. 

The last sterilizing impact was probably more in the range of Vesta 
or Ceres
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Three mineral buffers, most relevant where rock > water + air 

QFM aka FMQ – quartz-fayalite-magnetite

3 SiO2(s) + 2 Fe3O4(s) ¬® 3 Fe2SiO4(s) + O2(g)

Relatively oxidizing.  Approximates modern volcanic gases.  

IW – iron-wüstite

2 Fe(s) + O2(g) ¬® 2 FeO(s)

Reducing. Wüstite is typical of meteorite fusion crusts.

QFI – quartz-fayalite-iron

SiO2(s) + 2 Fe (s) + O2(g) ¬® Fe2SiO4(s)

Strongly reducing.  Approximates Ordinary and Enstatite chondrites. 



Three mineral buffers, most relevant where rock > water + air 

QFM  at magma temperatures
H2/H2O = 1 : 50
CO/CO2 = 1 : 30

IW  at magma temperatures
H2/H2O = 1 : 1
CO/CO2 = 2 : 1  

QFI  at magma temperatures
H2/H2O = 3 : 1
CO/CO2 = 6 : 1   but can easily prefer CH4



A Model of Thermochemistry of atmospheric gases:

1 – Compute equilibria with IW buffer until Fe is exhausted
• The buffer controls total oxygen in atmosphere

2 – Thereafter compute equilibria with oxygen conserved
• i.e., H2O+CO+2CO2 is constant

3 – Cooling time is set by how long it takes to radiate away all
the heat in the atmosphere

• for an ocean-evaporating impact, this is 1-3x103 yrs

4 – Determine quench temperature using our own 
parameterization for brown dwarf H2-H2O-CH4-CO kinetics

• this is the quenched composition





Atmophile Inventories  [bars]

Venus Atm 92 0.003 3.3 3.0e-3

CO2 H2O N2
36Ar

Earth Atm 0.004 0.01 0.78 3.3e-5

Earth Crust 50 270 0.3

Earth Mantle 70-200 100-500 1 3e-7

Why these initial conditions?

100 bars of CO2 presumes that previous H escape and 
mantle evolution have created an oxidized QFM mantle.
And of course equilibrium with a global magma mantle... 









Photochemical evolution of transient impact atmospheres:

• CH4 photolysis makes organic hazes and tars (cf. Titan)

• CH4, N2 + UV   makes HCN, nitriles

• CO2 and H2O + UV  oxidizes CH4

• Hydrogen escapes and tars precipitate 

• H2O is mostly condensed in oceans.  Wetter 

atmospheres are more oxidizing (more CO2 forms), less tarry

• the oceans are an infinite source of H2O

• The model runs until the CH4 is gone
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Xenon preserves a record of ancient hydrogen 
escape

Xe is the only noble gas more easily ionized than H, 
and hence is the only noble gas that can escape as 
an ion



Xe, Kr Isotopes normalized to Solar Wind and to 84Kr

Enstatite achondrite

carbonaceous chondrites
Enstatite chondrite



Nonradiogenic Xe 
is mass fractionated
on Earth, Mars

Enstatite achondrite
Enstatite chondrite

Xe, Kr Isotopes normalized to Solar Wind and to 84Kr



Depletion and mass 
fractionation imply
that Xe escaped

Enstatite achondrite
Enstatite chondrite

Xe, Kr Isotopes normalized to Solar Wind and to 84Kr



Old xenon is not as strongly fractionated as Air





Purple haze marks 
conditions that get the 
Xe fractionation and 
the Xe depletion at 
the same time 

Our model for Xe
escape as an ion

Best models require 
escape of at least an 
ocean of hydrogen 
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Review of Part II, told as a narrative example



History of a Maximum HSE EC or IAB type impact



History of a Maximum HSE EC or IAB type impact



History of a Maximum HSE EC or IAB type impact

Ejecta weathering as a CO2 sink revisted by T Kadoya and others 2019
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Kerguelen – (future tropical paradise)
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Comparison of several Solar System D/H ratios from C. Alexander 2011



Mineral buffers III 

The mineral buffer sets pO2

Equilibrium chemistry:

Methane goes as p2

Ammonia also goes as p2

300-1000 bar pressures after ocean vaporizes favor methane



Impact Mass Size Steam H2O®H2   ejecta Number
[g] [km] [bars] [bars] [km]

Theia 6e26  6500 many 13000 2000

HSE 3e25 2300 many 650 100 0-1

Pretty Big 3e24 1100 6000 65 10          1-2

Vesta 3e23 500 600 6.5 1 2-7

Mini 1e23 350  200             2.2            0.3 5-15

S. P.-A. 1e22 160 20              0.2         0.03 20-50



Mo - very
siderophile

Ni -
siderophile

Cr - sorta
siderophile

Ru –
extremely

siderophile

Siderophiles go to 
the core.  What 
gets left in the 
mantle is the last 
stuff to accrete.
This preserves a
history





Harold Urey (PNAS, 1952), in the course of founding modern 
planetary scioence, emphasized that the origin of life on Earth places 
an important boundary condition on Earth’s early atmosphere.

Urey accepted Oparin’s argument that the origin of life requires 
reducing conditions, although not overwhelmingly so, and would be 
greatly speeded by sunlight, surfaces, and even hydrogen escape. 

Urey also pointed out that impacts would be reducing because the 
impacting bodies still had their iron, and would subject the 
atmosphere and oceans to iron rains that would favor
the production of reduced atmospheres.

These ideas serve to introduce the subject



Oceans
pond

nitriles

H2O

SpaceLy a, 121.6 nmEUV l < 120 nm

N2 + EUV ® 2N

CH4 + Lya® H, CHn + CHn ® C2Hm, H ® C2Hm + C2Hm ® tar, H
+ N ® HCN, nitriles

tars

organic haze

H
H2



CO2 + EUV ® CO + O
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