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On Earth, O, and CH, have no
significant abiotic sources
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l. Modern Cycle




Biological Methanogenesis

4H,+ CO, == CH, + 2H,0
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Abiotic Methane Production

4H, + CO, = CH, + 2H,0
ropsr 3H, + CO mmp CH, + H,0O
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Abiotic reactions are sluggish at low temperatures without mineral catalysts
(Seewald et al. 2006, McCollom 2016)



Methane production is overwhelmingly biological

“Abiotic methane production estimates from serpentinization ranging between
approximately 1/30th and 1/150th the present biotic flux appear reasonable for
modern Earth.” - Arney et al., 2018, Astrobiology

Serpentinization: Source of Hydrogen
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Biological methane emissions to the atmosphere

Dominant substrates: .,
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Lyu Z, Shao N, Akinyemi T, Whitman WB (2018) Methanogenesis. Current Biology 28: R727-R732
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The major sinks for atmospheric methane is
photolytic destruction, which depends on OH
radicals

Eventual Free Chlorine
Destruction in Radical Methanotrophs

Modern methane’s the Stratosphere in Soil
atmospheric lifetime is ~10 years |
May not go quite as fast in atmosphere

without oxygen

Hydroxyl Radical




Natural Methane Sources and Sinks (Tg yr)
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Anthropogenic Methane Sources and Sinks (Tg yr)
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Microbial methane makers: Euryarchaeota
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Methanogens grow at extreme environmental conditions
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Biological methane production under putative
Enceladus-like conditions

Ruth-Sophie Taubner'?, Patricia Pappenreiter3, Jennifer Zwicker?, Daniel Smrzka?, Christian Pruckner’,
Philipp Kolar', Sébastien Bernacchi®, Arne H. Seifert®, Alexander Krajete®, Wolfgang Bach®, Jérn Peckmann
Christian Paulik@® 3, Maria G. Firneis?, Christa Schleper' & Simon K.-M.R. Rittmann® '

4,7

The detection of silica-rich dust particles, as an indication for ongoing hydrothermal activity,
and the presence of water and organic molecules in the plume of Enceladus, have made
Saturn’s icy moon a hot spot in the search for potential extraterrestrial life. Methanogenic
archaea are among the organisms that could potentially thrive under the predicted conditions
on Enceladus, considering that both molecular hydrogen (H,) and methane (CH,) have been
detected in the plume. Here we show that a methanogenic archaeon, Methanothermococcus
okinawensis, can produce CH,4 under physicochemical conditions extrapolated for Enceladus.
Up to 72% carbon dioxide to CH, conversion is reached at 50 bar in the presence of potential
inhibitors. Furthermore, kinetic and thermodynamic computations of low-temperature ser-
pentinization indicate that there may be sufficient H, gas production to serve as a substrate
for CH4 production on Enceladus. We conclude that some of the CH,4 detected in the plume
of Enceladus might, in principle, be produced by methanogens.
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Photosystem Il: nature’s O, producer

Originated in cyanobacteria
at least 2.4 billion years
ago, spread to algae and
plants by endosymbiosis

PDB 2AXT

Manganese-rich oxygen-evolving complex



Large biological O, fluxes are balanced

Photosynthesis:
Process by which CO, is converted to organic carbon IERTLTER) | [ e
(simplified as CH,0) using energy from sunlight: 5000 | 15000

CO, + H,0 + sunlight + nutrients > CH,0 + O,

‘AA.A“W'

Photosynthesis Respiration

Aerobic Respiration:

Process by which organic carbon is oxidized to CO,
with O, to fuel ATP production:

CH,0 + O, > CO, + H,0 + nutrients 3800 | 13800
Marine
Kasting, JF, Canfield DE (2012) The Global Oxygen Cycle. Fluxes in Tmol O, yr?!




O, export to atmosphere requires burial of
reductants that consume O,

organic

carbon

burial

CH,0 + O,
10

Fluxes in Tmol O, yr

Kasting, JE, Canfield DE (2012) The Global Oxygen Cycle. Chapter 7. Fundamentals of Geobiology, 93-104.




O, export to atmosphere requires burial of
reductants that consume O,

pyrite

burial

2FeS, + 150, +7H,0
7

Fluxes in Tmol O, yr

Kasting, JE, Canfield DE (2012) The Global Oxygen Cycle. Chapter 7. Fundamentals of Geobiology, 93-104.




The Global Oxygen (O,) Cycle. and Fluxes (in 10'2mol/yr)
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Figure from Wikipedia, created by Pengxiao Xu, Georgia Tech


https://commons.wikimedia.org/w/index.php?title=User:Pengxiao_Xu&action=edit&redlink=1
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Nutrient limitation

Baking a cake Making an organism

4 eggs: ' 106 moles carbon:

3 cups flour: M‘ 16 moles nitrogen:

2 cups sugar \ = 1 moles phosphorus

+ (trace butter, £ MA A .+ (traceiron,

baking powder, ' " manganese,

vanilla extract, molybdenum,

salt, etc.) zinc, etc.)
If you only have 4 eggs, even if If you only have 1 mol of P, even if
you have infinite flour and sugar, you have infinite nitrogen and
you can only make 1 cake. carbon, you can only make 1

diatom (equivalent).



Phosphorus availability may control long-term O,

P fertilizes phytoplankton growth

Catling D, Zahnle Z (2003). Evolution of Atmospheric Oxygen. Encyclopedia of Atmospheric Sciences, pp. 754-76



Life is extremely good at acquiring scarce bioessential elements

|. Storage
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Nucleic acid

Rivas-Lamelo et al 2017 Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin.
Geochemical Perspectives Letters



Life is extremely good at acquiring scarce bioessential elements

Il. Substitution

P-lipids

@0

Sebastian et al. 2016, Lipid remodelling is a widespread strategy in marine heterotrophic
bacteria upon phosphorus deficiency. ISME Journal




Life is extremely good at acquiring scarce bioessential elements

lll. Scavenging ~rw
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Lopez-Arredondo et al. 2013, Biotechnology of nutrient uptake and assimilation in plants. Int. J.
of Developmental Biology
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