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What techniques exist for characterizing exoplanet atmospheres?
What can different observing techniques tell us about exoplanets and their atmospheres?
Given a spectrum, how do we say something about the state of an exoplanet atmosphere?

What are the prospects for exoplanet biosignature detections?
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What techniques exist for characterizing
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Transit Secondary Eclipse Direct Imaging

entering eclipse
planet & star flux

during eclipse
only star flux
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Transit
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>

Transit Depth

Wavelength
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>

dimming of host star scales as (R,/Rs)?

planets will appear larger at wavelengths
corresponding to higher atmospheric opacity
(e.g., molecular absorption features)

Transit Depth

transit spectroscopy relies on non-detections
of stellar photons that are blocked by
atmospheric species or aerosols
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Transit Secondary Eclipse Direct Imaging
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planet & star flux
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before eclipse during eclipse

ratio of observations is sensitive to F,/F;
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before eclipse during eclipse

Fo+ F, F

ratio of observations is sensitive to F,/F;

note: works “best” at wavelengths where planet emits
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Secondary Eclipse
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Planet-to-Star Flux Ratio
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Transit Secondary Eclipse Direct Imaging

entering eclipse
planet & star flux

during eclipse
only star flux
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Direct Imaging

D

note: in reflected light, presenting as F /F;divides out stellar spectral variations
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>

Planet-to-Star Flux Ratio

>
Wavelength
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Direct Imaging

note: looks like secondary eclipse if presented as Fp/Fs
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Planet Flux

Wavelength
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What can different observing techniques tell us about
exoplanets and their atmospheres?
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Transit
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What is the additional transit depth caused by the planetary atmosphere?
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What is the additional transit depth caused by the planetary atmosphere?

_ area of atmospheric annulus _ 2mRpdz

area of stellar disk TR
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What is the additional transit depth caused by the planetary atmosphere?

_ area of atmospheric annulus _ 2mRpdz

area of stellar disk TR

What is the atmospheric thickness, 6z?
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What is the additional transit depth caused by the planetary atmosphere?

_ area of atmospheric annulus _ 2mRpdz

area of stellar disk TR

What is the atmospheric thickness, 6z?

Scales with the pressure scale height:

kBT
mg
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What is the additional transit depth caused by the planetary atmosphere?

_ area of atmospheric annulus _ 2mRpdz

area of stellar disk TR

What is the atmospheric thickness, 6z?

Scales with the pressure scale height:

Boltzmann constant atmospheric temperature

~— kBT/

/mg\

atmospheric mean molecular mass gravitational acceleration
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What is the additional transit depth caused by the planetary atmosphere?

2R 2R kpT
A="L. g =P B
Rg ‘ Rg mg

fudge factor to capture how many (or few) atmospheric
scale heights represent the thickness of the atmosphere
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What is the additional transit depth caused by the planetary atmosphere?

2R 2R kpT
A="P . xH,="F. B
Rg Rg mg

Where does the wavelength dependence come in?
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What is the additional transit depth caused by the planetary atmosphere?

2R 2R T
p pf'~(<B
a @p RZ \./mg

Where does the wavelength dependence come in?
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What is the additional transit depth caused by the planetary atmosphere?

2R 2Ry kpT
A="L. g =P B
Rg Rg mg

Thus, transit spectra can provide constraints on:

atmospheric opacity
atmospheric temperature
< atmospheric bulk composition >
surface gravity

planet size
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What is the additional transit depth caused by the planetary atmosphere?

2R 2Ry kpT
A="L. g =P B
Rg Rg mg

Thus, transit spectra can provide constraints on:

~ ~ atmospheric trace/bulk gas composition
atmospheric opacity — aerosols
atmospheric temperature atmospheric pressure
< atmospheric bulk composition >
surface gravity
planet size » 4 planet mass
< ~/

See also: de Wit & Seager (2013)
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What is the additional transit depth caused by the planetary atmosphere?

Thus, transit spectra can provide constraints on:

~ ~ atmospheric trace/bulk gas composition
atmospheric opacity — aerosols
atmospheric temperature atmospheric pressure
< atmospheric bulk composition >
surface gravity
planet size » 4 planet mass
< ~/

See also: de Wit & Seager (2013)
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Transit Secondary Eclipse Direct Imaging

entering eclipse
planet & star flux
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Transit Secondary Eclipse Direct Imaging

entering eclipse
planet & star flux
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What does the added planet-star system flux due to the planet “look” like?
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What does the added planet-star system flux due to the planet “look” like?

Fp~Rf) . By (Tp)
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What does the added planet-star system flux due to the planet “look” like?

Fp~Rf) . By (Tp)

Or, accounting for the non-blackbody nature of the atmosphere, we’d have:

Fp = Rp - 283 (Tp)

I

-5 atmospheric emissivity
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What does the added planet-star system flux due to the planet “look” like?

Fp =~ Rl% . £,B, (Tp)

Thus, emission spectra can provide constraints on:

atmospheric opacity
atmospheric temperature
planet size
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What does the added planet-star system flux due to the planet “look” like?

Fp =~ Rl% . £,B, (Tp)

Thus, emission spectra can provide constraints on:

atmospheric trace/bulk gas composition
aerosols

atmospheric pressure

atmospheric opacity
atmospheric temperature
planet size

{Iapse rate (i.e., dT/dp)}
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What does the added planet-star system flux due to the planet “look” like?

Fp =~ Rf) . £,B, (Tp)

Thus, emission spectra can provide constraints on:

atmospheric trace/bulk gas composition
aerosols

atmospheric pressure

atmospheric opacity
atmospheric temperature
planet size

{Iapse rate (i.e., dT/dp)}

note: geometry of secondary eclipse allows for sensitivity to deep atmosphere / surface
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Transit Secondary Eclipse Direct Imaging

entering eclipse
planet & star flux

during eclipse
only star flux
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How does the reflected light from the planet scale?
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How does the reflected light from the planet scale?
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How does the reflected light from the planet scale?
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How does the reflected light from the planet scale?
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How does the reflected light from the planet scale?
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How does the reflected light from the planet scale?

72 phase function: how
\ the reflectivity scales
with phase angle, a
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How does the reflected light from the planet scale?

Direct imaging in reflected light provides constraints on:

atmospheric opacity
surface reflectance
< atmosphere/surface scattering ¢
planet size
orbital distance
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How does the reflected light from the planet scale?

Direct imaging in reflected light provides constraints on:

~ ~ atmospheric composition
atmospheric opacity > atmospheric pressure
surface reflectance C » aerosols
< atmosphere/surface scattering=
planet size ‘
orbital distance .
- ) : {surface composmon}

Tyler D. Robinson | Sagan Workshop | Friday, July 19th 53




How does the reflected light from the planet scale?

Fp Rp
— = qub(a) — note: potential for degeneracies!
FS r

Direct imaging in reflected light provides constraints on:

~ ~ atmospheric composition
atmospheric opacity > atmospheric pressure
surface reflectance C » aerosols
< atmosphere/surface scattering=
planet size ‘
orbital distance .
- ) : {surface composmon}
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Planet—Star Flux Ratio x 10°
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Spectral Resolution




Spectral Resolution
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Spectral Resolution

hi-res observations can be sensitive to
Doppler shifts due to orbital motions or
planetary winds

integrating information across wavelength

(via a cross-correlation) can yield gas species
detections even with low-SNR spectra

planet light need not be separated from star
light

well-suited to ground-based facilities (larger
apertures better enable hi-res observations)
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Spectral Resolution

Brogi et al. (2012
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Given a spectrum, how do we say something about
the state of an exoplanet atmosphere?
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Planet-to-Star Flux Ratio

le-9
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You could:
1. “guess and check” some models.

2. run a large grid of models and compare
to data (e.g., x> metric).
3. use Markov Chain Monte Carlo (MCMC).
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Retrieval

initial guess

|

[ atmospheric state] [ hi-res spectrum ]

1 |

forward
model

parameter instrument
adjustment [ observed spectrum ] simulator

[ fit metric ] [ degraded spectrum ]

likelihood
evaluation
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Retrieval

initial guess
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Retrieval

initial guess

forward
model

[ atmospheric state] [ hi-res spectrum ]

1 |

. .. parameter instrument
(i.e., a radiative transfer model) adjustment [ observed Spectrum] simulator
t 1 |
[ fit metric ] [ degraded spectrum ]

likelihood
evaluation
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Retrieval

PandExo: The Exoplanet ETC

Tools to help the community with planning exoplanet observations.

initial guess
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Retrieval

initial guess
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Retrieval
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initial guess
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Retrieval

(i.e., sampling algorithm)

initial guess
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log fizo

Planet-to-Star Flux Ratio
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Planet-to-Star Flux Ratio

10{ ¢ SNR=5
0.8 1 + +
g
0.4 4 +{+ + +
PTh T Ly
TR

Wavelength (um)
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log ps = 5.01*38}

|Og f|.|20 = —29813;3
- I

log fiz0 = —3.1923-33

log fizo

e ————————— ———————

log ps log fha0 log ps log fhao
Why did the water vapor constraints improve dramatically, while the surface pressure constraints hardly changed?
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Planet-to-Star Flux Ratio
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Planet-to-Star Flux Ratio
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Key point: Atmospheric constraints are sensitive to SNR and spectral resolution in complex, non-linear ways!
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What are the prospects for exoplanet
biosignature detections?
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Oxygen False Positives

Low non-condensable gas
Any Stellar Host''

Possibly

W, o

Transmission: 0.6 — 4.5um
Reflectivity: 0.4 — 4.5um

Possibly

Transmission: 0.6 — 1.3um
Reflectivity: 0.4 — 1.0um

Habitable CO,-rich planet
M Dwarf

Transmission: 0.6 - 2.5um

Reflectivity: 0.4 —2.5um

Meadows (2017)

Desiccated CO,-rich planet
M Dwarf

o

3

Transmission: 0.6 — 2.5um
Reflectivity: 0.4 -2.5um

See also: Wordsworth & Pierrehumbert (2014), Luger & Barnes (2015), Tian (2015), Segura et al. (2003, 2005), Hu & Seager (2014), Gao et al. (2015)
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Oxygen False Positives

Meadows (2017)
Low non-condensable gas | ®/< L) 8 Habitable CO,-rich planet Desiccated CO,-rich planet

Any Stellar Host’ . M Dwarf & M Dwarf M Dwarf

o

3

N, o Ho G

Transmission: 0.6 — 4.5um Transmission: 0.6 — 1.3um Transmission: 0.6 - 2.5um Transmission: 0.6 — 2.5um
Reflectivity: 0.4 — 4.5um Reflectivity: 0.4 — 1.0um Reflectivity: 0.4 - 2.5um Reflectivity: 0.4 —2.5um

See also: Wordsworth & Pierrehumbert (2014), Luger & Barnes (2015), Tian (2015), Segura et al. (2003, 2005), Hu & Seager (2014), Gao et al. (2015)
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TRAPPIST-1 System

Relative scale
of Earth

Star and orbits shown in scale
Planets enlarged approximately 7,600x
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James Webb Space Telescope
(Launch: March 2021)
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What is the expected performance of JWST for studying temperate, rocky exoplanet atmospheres?

Valenti et al. (2006) : detection of H,O and CO, only for Earth analogs transiting very nearby M dwarfs

Kaltenegger & Traub (2009) : biosignature detections for Earths orbiting most M dwarf types with 200 hr of obs.

Deming et al. (2009) : potential to characterize super-Earths, but will struggle to characterize Earth analogs

Cowan et al. (2015) : roughly 1 year of JWST time to study 3 temperate planets orbiting M5 dwarfs

Greene et al. (2015) : single transit detections of some species for clear H, or H,O-dominated super Earth
atmospheres for early-M host

Barstow & Irwin (2016) : detection of O3 for TRAPPIST planets in 30—60 transits

Morley et al. (2017) : detection of atmosphere for hottest TRAPPIST-1 planets in 10s of transits or eclipses

Stevenson (2019) : struggle to detect anything but CO, for Earth-like TRAPPIST-1 planets

Lustig-Yaeger et al. (2019) : clearsky CO, or abiotic oxygen atmospheres detectable for TRAPPIST-1 planets
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What is the expected performance of JWST for studying temperate, rocky exoplanet atmospheres?

* Valenti et al. (2006) : detection of H,0 and CO, only for Earth analogs transiting very nearby M dwarfs

* Kaltenegger & Traub (2009) : bjosignature detections for Farths orbiting most M dwarf types with 200 hr of obs.

* Deming et al. (2009) : potentia e to characterize Earth analogs

« Cowan et al. (2015) : roughly 1 ets orbiting M5 dwarfs

* Greene et al. (2015) : single tr r H,O0-dominated super Earth
atmospheres for early- ost

e Barstow & Irwin (2016) : detection of O5 for TRAPPIST planets in 30—60 transits

* Morley et al. (2017) : detection of atmosphere for hottest TRAPPIST-1 planets in 10s of transits or eclipses

e Stevenson (2019) : struggle to detect anything but CO, for Earth-like TRAPPIST-1 planets

e Lustig-Yaeger et al. (2019) : clearsky CO, or abiotic oxygen atmospheres detectable for TRAPPIST-1 planets
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- Origins Space Telescope

(concept for 2030s ‘Iéuhch) o
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Earth-like exoplanet & late-type M dwarf at 4.2 pc OST Interim Report
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(concepts for 2030s launch)
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Credit: HabEx Interim Report
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Feng et al. (2018)
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Feng et al. (2018)
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ELTs & Biosignatures

 MIR direct imaging of Earths orbiting AFGK stars
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See also: Currie et al. (2019)
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MIR direct imaging of Earths orbiting AFGK stars

visible imaging of small, cool worlds orbiting M dwarfs

See also: Wang & Meyer et al. (2019)
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Snellen et al. (2013)
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MIR direct imaging of Earths orbiting AFGK stars

visible imaging of small, cool worlds orbiting M dwarfs

Planet Orbital Phase
TELLURIC ABSORPTION

high-resolution detection of O, for exo-Earths
e can be combined with high-contrast imaging

-20 0
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See also: Kawahara (2014); Serindag & Snellen (2019)




What techniques exist for characterizing exoplanet atmospheres?
What can different observing techniques tell us about exoplanets and their atmospheres?
Given a spectrum, how do we say something about the state of an exoplanet atmosphere?

What are the prospects for exoplanet biosignature detections?

Thanks to: Sagan Fellowship Program, NAI & NExSS, NASA Exoplanets Research Program, NASA Exobiology
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Transiting Hot Jupiters : e ] .
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Transit spectra can provide constraints on: -

atmospheric opacity
atmospheric temperature
< atmospheric bulk composition
surface gravity

N

atmospheric trace/bulk gas composition
— aerosols

atmospheric pressure
>

planet size

> {planet mass}

-~

recall: transit spectra are more sensitive to lower-pressure atmospheric regions

See also: de Wit & Seager (2013)
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Transit spectra can provide constraints on: -

- ~ atmospheric trace/bulk gas composition
atmospheric opacity — aerosols
atmospheric temperature atmospheric pressure

< atmospheric bulk composition >
surface gravity
planet size g {planet mass}
/

recall: transit spectra are more sensitive to lower-pressure atmospheric regions

putting these together: transit spectroscopy has the potential to
detect atmospheric chemical biosignatures if these signatures are
transported and preserved (in some way) in the upper atmosphere

See also: de Wit & Seager (2013)
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