Characterizing Planets and Biosignatures from Atmospheric Spectra

Tyler D. Robinson HABLab.net tyler.robinson@nau.edu What techniques exist for characterizing exoplanet atmospheres?

What can different observing techniques tell us about exoplanets and their atmospheres?

Given a spectrum, how do we say something about the state of an exoplanet atmosphere?

What are the prospects for exoplanet biosignature detections?

What techniques exist for characterizing exoplanet atmospheres?

Transit

Transit

Transit

- dimming of host star scales as $(R_p/R_s)^2$
- planets will appear larger at wavelengths corresponding to higher atmospheric opacity (e.g., molecular absorption features)
- transit spectroscopy relies on non-detections of *stellar* photons that are blocked by atmospheric species or aerosols

ratio of observations is sensitive to F_p/F_s

ratio of observations is sensitive to F_p/F_s

note: works "best" at wavelengths where planet *emits*

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

- scales as $B_{\lambda}(T_{\rm p})/B_{\lambda}(T_{\rm S})$
- expect wavelength-dependence, due to ratio of Planck functions at different temperatures
- deviations from ratio of Planck functions can indicate absorption or emission features

HR 8799

note: in reflected light, presenting as F_p/F_s divides out stellar spectral variations

note: looks like secondary eclipse if presented as F_p/F_s

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

What can different observing techniques tell us about exoplanets and their atmospheres?

$$\Delta = \frac{\text{area of atmospheric annulus}}{\text{area of stellar disk}} = \frac{2\pi R_{\text{p}}\delta z}{\pi R_{\text{s}}^2}$$

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

 R_{n}

$$\Delta = \frac{\text{area of atmospheric annulus}}{\text{area of stellar disk}} = \frac{2\pi R_{\text{p}} \delta z}{\pi R_{\text{s}}^2}$$

What is the atmospheric thickness, δz ?

 δz

$$\Delta = \frac{\text{area of atmospheric annulus}}{\text{area of stellar disk}} = \frac{2\pi R_{\text{p}} \delta z}{\pi R_{\text{s}}^2}$$

What is the atmospheric thickness, δz ?

Scales with the pressure scale height:

 δz

$$H_p = \frac{k_{\rm B}T}{mg}$$

What is the atmospheric thickness, δz ?

Scales with the pressure scale height:

 δz

$$\Delta = \frac{2R_{\rm p}}{R_{\rm S}^2} \cdot xH_p = \frac{2R_{\rm p}}{R_{\rm S}^2} \cdot x\frac{k_{\rm B}T}{mg}$$

fudge factor to capture how many (or few) atmospheric scale heights represent the thickness of the atmosphere

$$\Delta = \frac{2R_{\rm p}}{R_{\rm S}^2} \cdot xH_p = \frac{2R_{\rm p}}{R_{\rm S}^2} \cdot x\frac{k_{\rm B}T}{mg}$$

Where does the wavelength dependence come in?

$$\Delta = \frac{2R_{\rm p}}{R_{\rm s}^2} x h_p = \frac{2R_{\rm p}}{R_{\rm s}^2} x h_{mg}^{\rm kBT}$$

Where does the wavelength dependence come in?

$$\Delta = \frac{2R_{\rm p}}{R_{\rm S}^2} \cdot xH_p = \frac{2R_{\rm p}}{R_{\rm S}^2} \cdot x\frac{k_{\rm B}T}{mg}$$

Thus, transit spectra can provide constraints on:

atmospheric opacity atmospheric temperature atmospheric bulk composition surface gravity planet size

 χH

$$\Delta = \frac{2R_{\rm p}}{R_{\rm S}^2} \cdot xH_p = \frac{2R_{\rm p}}{R_{\rm S}^2} \cdot x\frac{k_{\rm B}T}{mg}$$

Thus, transit spectra can provide constraints on:

See also: de Wit & Seager (2013)

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

$$\Delta = \frac{2R_{\rm p}}{R_{\rm S}^2} \cdot xH_p = \frac{2R_{\rm p}}{R_{\rm S}^2} \cdot x\frac{k_{\rm B}T}{mg}$$

note: potential for degeneracies!

Thus, transit spectra can provide constraints on:

See also: de Wit & Seager (2013)

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

Direct Imaging

 $F_{\rm p} \sim R_{\rm p}^2 \cdot B_{\lambda} (T_{\rm p})$

 $F_{\rm p} \sim R_{\rm p}^2 \cdot B_{\lambda} (T_{\rm p})$

Or, accounting for the non-blackbody nature of the atmosphere, we'd have:

$$F_{p} \approx R_{p}^{2} \cdot \varepsilon_{\lambda} B_{\lambda} (T_{p})$$

$$\uparrow$$
atmospheric emissivity

 $F_{\rm p} \approx R_{\rm p}^2 \cdot \varepsilon_{\lambda} B_{\lambda} \left(T_{\rm p} \right)$

Thus, emission spectra can provide constraints on:

atmospheric opacity atmospheric temperature planet size

 $F_{\rm p} \approx R_{\rm p}^2 \cdot \varepsilon_{\lambda} B_{\lambda} \left(T_{\rm p} \right)$

Thus, emission spectra can provide constraints on:

 $F_{\rm p} \approx R_{\rm p}^2 \cdot \varepsilon_{\lambda} B_{\lambda} \left(T_{\rm p} \right)$

Thus, emission spectra can provide constraints on:

note: geometry of secondary eclipse allows for sensitivity to deep atmosphere / surface

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

Direct Imaging

- 7

stellar flux falls off as 1/r²

NRp planet "collecting area" scales as R_p^2 . stellar flux falls off as 1/r² How does the reflected light from the planet scale?

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

$$\frac{F_{\rm p}}{F_{\rm S}} = A_{\rm p}\phi(\alpha)\frac{R_{\rm p}^2}{r^2}$$

Direct imaging in reflected light provides constraints on:

atmospheric opacity surface reflectance atmosphere/surface scattering planet size orbital distance

$$\frac{F_{\rm p}}{F_{\rm S}} = A_{\rm p}\phi(\alpha)\frac{R_{\rm p}^2}{r^2}$$

Direct imaging in reflected light provides constraints on:

$$\frac{F_{\rm p}}{F_{\rm S}} = A_{\rm p}\phi(\alpha)\frac{R_{\rm p}^2}{r^2} \quad \text{note: potential for degeneracies!}$$

Direct imaging in reflected light provides constraints on:

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

- hi-res observations can be sensitive to Doppler shifts due to orbital motions or planetary winds
- integrating information across wavelength (via a cross-correlation) can yield gas species detections even with low-SNR spectra
- planet light need not be separated from star light
- well-suited to ground-based facilities (larger apertures better enable hi-res observations)

note: *not* even a transiting exoplanet

Given a spectrum, how do we say something about the state of an exoplanet atmosphere?

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

(i.e., a radiative transfer model)

(e.g.,
$$\chi^2 = \sum_i \frac{(d_i - m_i)^2}{\sigma_i^2}$$
)

(i.e., sampling algorithm)

Why did the water vapor constraints improve dramatically, while the surface pressure constraints hardly changed?

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

Key point: Atmospheric constraints are sensitive to SNR and spectral resolution in complex, non-linear ways!

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

What are the prospects for exoplanet biosignature detections?

Oxygen False Positives

Meadows (2017)

See also: Wordsworth & Pierrehumbert (2014), Luger & Barnes (2015), Tian (2015), Segura et al. (2003, 2005), Hu & Seager (2014), Gao et al. (2015) Tyler D. Robinson | Sagan Workshop | Friday, July 19th 80

Oxygen False Positives

Meadows (2017)

See also: Wordsworth & Pierrehumbert (2014), Luger & Barnes (2015), Tian (2015), Segura et al. (2003, 2005), Hu & Seager (2014), Gao et al. (2015) Tyler D. Robinson | Sagan Workshop | Friday, July 19th 81

Relative scale of Earth

Star and orbits shown in scale Planets enlarged approximately 7,600x

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

see also: de Wit et al. (2016, 2018)

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

James Webb Space Telescope

(Launch: March 2021)

What is the expected performance of JWST for studying temperate, rocky exoplanet atmospheres?

- Valenti et al. (2006) : detection of H₂O and CO₂ only for Earth analogs transiting *very* nearby M dwarfs
- Kaltenegger & Traub (2009) : biosignature detections for Earths orbiting most M dwarf types with 200 hr of obs.
- Deming et al. (2009) : potential to characterize super-Earths, but will struggle to characterize Earth analogs
- Cowan et al. (2015) : roughly 1 year of JWST time to study 3 temperate planets orbiting M5 dwarfs
- Greene et al. (2015) : single transit detections of some species for clear H₂ or H₂O-dominated super Earth atmospheres for early-M host
- Barstow & Irwin (2016) : detection of O₃ for TRAPPIST planets in 30—60 transits
- Morley et al. (2017) : detection of atmosphere for hottest TRAPPIST-1 planets in 10s of transits or eclipses
- Stevenson (2019) : struggle to detect anything but CO₂ for Earth-like TRAPPIST-1 planets
- Lustig-Yaeger et al. (2019) : clearsky CO₂ or abiotic oxygen atmospheres detectable for TRAPPIST-1 planets

What is the expected performance of JWST for studying temperate, rocky exoplanet atmospheres?

- Valenti et al. (2006) : detection of H₂O and CO₂ only for Earth analogs transiting *very* nearby M dwarfs
- Kaltenegger & Traub (2009) : biosignature detections for Earths orbiting most M dwarf types with 200 hr of obs.
- Deming et al. (2009) : potentia
- Cowan et al. (2015) : roughly 1
- Greene et al. (2015) : single tra
- We need to "wait and see" what JWST will deliver to the exoplanet community!

e to characterize Earth analogs ets orbiting M5 dwarfs r H₂O-dominated super Earth

atmospheres for early-M host

- Barstow & Irwin (2016) : detection of O₃ for TRAPPIST planets in 30—60 transits
- Morley et al. (2017) : detection of atmosphere for hottest TRAPPIST-1 planets in 10s of transits or eclipses
- Stevenson (2019) : struggle to detect anything but CO₂ for Earth-like TRAPPIST-1 planets
- Lustig-Yaeger et al. (2019) : clearsky CO₂ or abiotic oxygen atmospheres detectable for TRAPPIST-1 planets

Origins Space Telescope

(concept for 2030s launch)

OST Science

(concepts for 2030s launch)

Oct. 2035

Credit: HabEx Interim Report

Tyler D. Robinson | Sagan Workshop | Friday, July 19th

Feng et al. (2018)

Credit: ESO

ELTs & Biosignatures

• MIR direct imaging of Earths orbiting AFGK stars

See also: Currie et al. (2019)

ELTs & Biosignatures

- MIR direct imaging of Earths orbiting AFGK stars
- visible imaging of small, cool worlds orbiting M dwarfs

See also: Wang & Meyer et al. (2019)

ELTs & Biosignatures

- MIR direct imaging of Earths orbiting AFGK stars
- visible imaging of small, cool worlds orbiting M dwarfs
- high-resolution detection of O₂ for exo-Earths
 - can be combined with high-contrast imaging

Snellen et al. (2013)

See also: Kawahara (2014); Serindag & Snellen (2019)

What techniques exist for characterizing exoplanet atmospheres?

What can different observing techniques tell us about exoplanets and their atmospheres?

Given a spectrum, how do we say something about the state of an exoplanet atmosphere?

What are the prospects for exoplanet biosignature detections?

Thanks to: Sagan Fellowship Program, NAI & NExSS, NASA Exoplanets Research Program, NASA Exobiology

Transiting Hot Jupiters

Transit spectra can provide constraints on:

recall: transit spectra are more sensitive to lower-pressure atmospheric regions

See also: de Wit & Seager (2013) Tyler D. Robinson | Sagan Workshop | Friday, July 19th Transit spectra can provide constraints on:

recall: transit spectra are more sensitive to lower-pressure atmospheric regions

putting these together: transit spectroscopy has the potential to detect atmospheric chemical biosignatures *if* these signatures are transported and preserved (in some way) in the upper atmosphere

See also: de Wit & Seager (2013) Tyler D. Robinson | Sagan Workshop | Friday, July 19th