Ocean Worlds of the Outer Solar System

Dr. Kevin Peter Hand NASA Jet Propulsion Laboratory, California Institute of Technology

Copyright National Geographic

Europa

Callisto

Shown to scale

Hug et al., 2016

Tenericutes

Europa

Titan

Enceladus

Callisto

Ganymede

Triton

Shown to scale

Old Goldilocks

Venus

Mars

New Goldilocks

Ganymede

Callisto

National Geographic

Tidal Energy and the New Goldilocks for Habitability

Earth 60-80 mW m⁻²

0 2500 mW m⁻²

Europa 10-800 mW m⁻²

Enceladus ~16 GW ~200? mW m⁻²

Too big? Ice too thick?

Relic oceans?

Unknown

Habitability

Global ocean Chondritic composition • ******

Exogenous delivery

~4 Gyr history

WATER

LIFE

Radiolytic chemistry

ENERGY

Tidal dissipation

Hand et al. 2009

Water

Discovering an Ocean in 3 Easy Pieces

Piece #1: Find a Rainbow Connection

Рис. 198. Спектр Европы, среднее из четырех записей 1.10 1964 г., ЗТШ, Нуль-пункт (пунктир) зависит от длины волны вследствие слабой паразитной подсветки.

разитнои подсветки.

Moroz, 1964

Piece #2: Babysit a Spacecraft

EUROPA: EVIDENCE FOR AN OUTER SHELL OF WATER $F = GM, M_2 \rightarrow V = GM \left[1 + \frac{2}{5} \frac{2}{5} \left(\frac{2}{5} \frac{2}{5} \left(\frac{2}{5} \frac{$ $V = \frac{GM}{F} \left[1 - \frac{1}{2} J_{1} \left(\frac{R}{r} \right)^{2} (3s_{1} - \frac{1}{2} - \frac{1}{2} J_{1} \left(\frac{R}{r} \right)^{2} (3s_{1} - \frac{1}{2} - \frac{1}{2} J_{1} \left(\frac{R}{r} \right) + 3 c_{12} \left(\frac{R}{r} \right) \cos \varphi \cos 2\lambda \right]$ I= fr2dm Galileo data for Europa: I= 0.346 MR2 $p = 1050 \text{ Mm}^{-3}$ H20 layer of ~ 80-170 km p ~ 5000 - 8000 kg = 3 Anderson et al. (1998) Silicates p~ 3000+ kg Silientes p~ 3000 + kg m3 10~ 5000 - 8000 kg ~ (Anderson et d. (1995)

Europa Cross Section

Iron Iron/Sulfur

Rock/Silicates

Water in either liquid or solid phase

Piece #3: Adhere to Airport Security

JPL

.

.

.

Date: 12/18/96 18:55 UTC Range to Jupiter: 755,421 km Range to Europa: 212,569 km

LIQUID WATER SHELL OF Jovian B-field Synodic period at Europa: 11.2 hrs FARADAY'S LAW $\Delta x \vec{E} = -9\vec{B}$ **J** 26 B.f. 12 "inertia" A~ 200-250 T 94

NASA/JPL/SSI

Elements

	_			E	sser	ntial f	for	all life				[2~	ri	~d	ic	Т	Ы		'n	Ч	l ;f	•	
H I			Major ions for all life Major transition metals for life													Table and Life								
Li 3	Be 4		 Essential in traces for all life Specialized uses for some life 													В 5		C 6	N 7	l	0 8	F 9	Ne 10	
Na 11	Mg 12		Transported, reduced and/or methylated AI Si P S CI A by some microbes I3 I4 I5 I6 I7 I8														Ar I8							
K 19	Ca 20	S 2	c I	Ti 22	V 23	2 3 2	Cr 24	Mn 25	F 2	e 6	Co 27	N 2	√i .8	Cı 29		Zn 30	Ga 31		Ge 32	A: 33	s 3	Se 34	Br 35	Kr 36
Rb 37	Sr 38	۲ 3	(9	Zr 40	NI 41	b M I 4	10 12	Тс 43	R 4	tu 4	Rh 45	P 4	d 6	Aء 47	н (,	Cd 48	In 49	0	Sn 50	Sł 5		Те 52	І 53	Xe 54
Cs 55	Ba 56	L 5	La Hf 7 57 72 7		Та 73	a V 3 7	W Re 74 75		C 7	Os 6	lr 77	P 7	Ът 8	Αι 79	u Hg '9 80		TI 81	TI F 81 8		b Bi 2 83		Po 84	At 85	Rn 86
Fr 87	Ra 88	A 8	іс 9	Rf 104		b S 5 I	бg 06	Bh 107	H K	ls 08 I	Mt 09)s 10	Rg I I	5 U	Jub 12	Uu 113	t U 3	luq 14	Uu 11	ір 5	Uuh 116	Uus 117	Uuo 118
	С 5 Т	Če 8	Pr 59 Pa		b 0	Pm 61 Np	Sn 62 Pu	n E 2 6	u 3 m	Gd 64 Cm	Т 6 В	b 5 k	D 60	y 6	Ho 67 Es	E 6 F	ir 8 m	Tm 69 Md	Y 7 N	Ъ 0 ю	Lı 7 L	u I r		

		Essential for all life											P	Pariadic Table and Life													
		Major ions for all life Major transition metals for life														10	iU	IC	a		J		C	He 2			
B	le 1	Essential in traces for all life Specialized uses for some life																E	3	C 6		N 7		0 8	F 9	Ne 10	
۲ ۱	1g 2	Transported, reduced and/or methylated by some microbes													A	d 3	Si 14	ł	Р 15		S 16	Cl I7	Ar I8				
C 2	Ca .0	Sc 21	ר 2	Гі 2	V 23	2 2	Cr 24	M 2	n 5	Fe 26	C 2	Co 7	N 28	li B	C 2	lu 9	Zr 30	n)	G 3	ia I	Ge 32		As 33		Se 34	Br 35	Kr 36
S 3	ir 8	Y 39	Z 4	Zr 0	Nb 41	M 4	10 2	Т 4	с 3	Ru 44	R 4	հ 5	Po 46	d 6	A 4	g 7	Co 48	d 3	lı 4	n 9	Sn 50)	Sb 5 I		Те 52	 53	Xe 54
B 5	6 6	La 57	⊦ 7	Hf '2	Ta 73	V 7	W Re 74 75		e 5	Os 76		lr 77		t B	A 7	u 9	Hg 80	g)	Т 8	1 	Pb 82		Bi 83		Po 84	At 85	Rn 86
R 8	a 8	Ac 89	F I (Rf 04	Db 105	S 10	бу 06	B I C	h)7	Hs 108	۲ ۱	1t 09	D	s 0	R I I	g	Uu 11	ıb 2	U	ut 3	Uu /	q 4	Uu 115	р I 5	Uuh II6	Uu: 117	Uuo 118
	Ce 58	e P 3 5	r 9	No 60	d P) 6	m I	Sn 62	n 2	Eu 63	6	id 4	Т 6	Ь 5	D 60	у 6	H 6	o 7	E 68	r 8	Tr 69	n Ə	Yt 70)	Lu 71			
	Th 90	n P) 9	Pa U Np Pu Am Cm Bl 91 92 93 94 95 96 97		k 7	c Cf 7 98		E 9	Es F 99 I		n Md 00 101		d I	No L 102 I(Lr 103	3										

Raulin et al., (2010) Adapted from Wackett et al. (2004)

Dana Barry/National Geographic

Fray & Schmitt (2009)

Fray & Schmitt (2009)

Hussmann et al. (2006)

Postberg et al. 2009

Postberg et al. 2009

Hsu et al., 2015

EUROPA

EUROPA: RADIATION ENVIRONMENT

Gyro radii $r_g = R_e c(B) \left[(ME sm^2 \Theta)^2 \right]$ G≈ Re with 0=90° -> 18 MeV pt -> 1.1 MeV 0+ -> 0.6 m.V S+ Johnson et al. (2004)

oceanworldslab.jpl.nasa.gov

Sodium chloride grains post-irradiation

NaCl saturated brine. T = 290 K, $P \sim 1e-6 \text{ Torr}$

NaCl evaporite. T = 100 K, P = 1e-9 Torr, 10 keV electrons

Sodium chloride brine evaporite post-irradiation

Hand & Carlson, 2015

Sea salt (NaCl) found on Europa Hubble Space Telescope follows up on lab experiments and finds the fingerprint of irradiated salt

from the ocean below.

Lab sodium chloride *before* irradiation with electrons.

Lab sodium chloride after irradiation with electrons.

Oceanworldslab.jpl.nasa.gov

Trumbo, Brown, and Hand (2019)

Life alleviates chemical disequilibrium in the environment

Earth is a dynamic planet with many niches of chemical disequilibrium

The Surface Radiation Environment of Europa

photolytic oxidant cycle \rightarrow H₂O·O + H₂O·O \rightarrow H₂O·H₂O + O₂ (1) $HO_2 + HO_2 \longrightarrow H_2O_2 + O_2$ (3,4,5) Trapped O₂

Solid-state radiolytic-

Hand & Brown, 2013

Radiolytic Hydrogen peroxide = Energy for Life?

Priscu & Hand 2012

Spencer & Calvin 2002

How oxidized is Europa's ocean?

Hand et al., 2007; 2009

ation:	e	λ	H+,	O ⁿ⁺ , S	n+	
\$	<u>}</u> }	3	}	333		} }
O(OH) $_2S$ A	Fe(O1 l(OH) ₃	$(H)_3 O_2 O_2 O_2 O_1 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$	CH_4 NaCl	N _{Organ} KCl	CO_2	H_{2n+2} O_2
H_4^+	CH_4 C_nH_{2n} V_2	Na^+ Cl^- +2 Fe^{2+} NH_3	NO ₃ Na H ₂ S	Nor + CCC CH4	O_2 G_2 C O_2 H K^+	SO_4^{2-} NO_2^{-} I^- CO_3^- Fe^{2+} N_2
Re	duced Ocean			Biolo Oce	gical ean	

Hand et al., 2009

Great, so how do we find it?

Europa Clipper (NASA)

JUICE (ESA)

Dragonfly Mission Concept for Titan exploration (NASA New Frontiers, competed mission)

Dragonfly in flight

Europa Lander Mission Concept

Carrier Stage 2.0 Mrad radiation exposure Elliptical disposal orbit

Deorbit, Decent, Landing

- Guided deorbit burn
- Sky Crane landing system
- 100-m accuracy
- DTE tones only

Surface Mission

- **Biosignature Science**
- 20+ days
- **3** samples from 1 trench
- **Direct to Earth Comm or** Clipper (backup)
- 1.5 Gbit data return
- 50 kWh battery
- 2.0 Mrad radiation exposure

A Connected Set of Goals & Objectives Addressed with a Focused Model Payload

The technical data in this document is controlled under the U.S. Export Regulations; release to foreign persons may require an export authorization. Pre-Decisional Information – For Planning and Discussion Purposes Only

- Model payload provides a minimum of 9 lines of evidence for identifying potential biosignatures
- Biosignature Investigations are highly complementary
- Model payload ensures measurement redundancy
- Investigations yield high value science even in the absence of any potential biosignatures.

Lander Provides a Robust Suite of **Biosignature Measurements**

Pre-Decisional Information - For Planning and Discussion Purposes Only

Viking Results: Then & Now

Europa Lander Potential Future Mission Concept

