

After ~ March 2009, Spitzer's cryogen will be gone then T~ 35K (radiatively cooled), full performance for 3.6 and 4.5 micron photometry, but nothing else

Can still do significant transit and eclipse science:

thermal emission and composition (water, CO)

precise radii from transits improved radii for giant planets radii for close-in super-Earths stable, precise, continuous photometry

direct transit searches for "hot Earths" transit timing to detect low mass non-transiting planets

significant complement to Kepler

Knutson et al. 2007 Nature (May 10)

$3.6 \& 4.5 \ \mu m$ secondary eclipses using Warm Spitzer Can in principle measure water & CO absorption, if ground observers can measure thermal continuum

Large programs will be possible on Warm Spitzer: so, how many transiting systems by 2009?

- Currently there are 16 with V < 13
- Expect ~ 20 by early 2008
- A transiting "hot Neptune" recently announced
- Discovery rate is accelerating

Spitzer transit of GJ 436b Deming et al. astro-ph /0707.2778

Arguably by 2009:

- -100 transiting hot Jupiters
- -10 hot Neptunes

Transit radius precision depends on precise photometry
- Spitzer provides both precise photometry, and
absence of stellar limb darkening

Warm Spitzer can measure radii of super-Earths, and "Ocean Planets"

GJ876d

Warm Spitzer will be sensitive to close-in super-Earths in systems already known to contain a hot Jupiter:

- via direct transit searches
- via transit timing perturbations

both techniques benefit from resonances

Holman & Murray 2005 Science 307, 1288

Warm Spitzer complements Kepler

- transit timing
- less sensitive to stellar activity

Warm Spitzer will still be at the cutting edge of exoplanet science, especially for:

secondary eclipses at 3.6 & 4.5 microns

transits of small planets orbiting M-dwarfs

transit timing in the Kepler field

