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The First Two VLTI Auxihary
Telescopes (ATs)
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Astrometric Measurement with
an Interferometer
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PRIMA Operational Principles

e Extremely high precision (many things need to
be done to 1/1000" of a wavelength)

m—
e Use only ATs for high-precision astrometry

e Differential measurements wherever possible
e Monitoring of system and environment

e Systematic data reduction and calibration
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Some Complications and their
Solutions

e Atmosphere induces random variations of
stellar position

e Internal motion of mirrors (vibrations, thermal
drifts) cause delay errors

—

e Observe two stars simultaneously

e Monitor internal pathlength with laser
metrology system
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Atmospheric Limitation of
Narrow-Angle Astrometry
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PRIMA = Phase-Referenced Imaging #&Xx
and Microarcsecond Astrometry o

e VLTI infrastructure for dual-star interferometry
* Dual-star modules at ATs and UTs
* Delay lines which support beams from two stars

 Differential delay lines

* Beam combining instruments for primary and
secondary star

* Metrology system to tie delay measurements
together

» Software and operational concepts
e Phased implementation has started
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VLTI Delay Lines
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Differential Delay Line Design
(PRIMA Planet Search Consortium)
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PRIMA Star Separator
(TNO-TPD, Delft, Netherlands)
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PRIMA Fringe Sensing Units

(Alenmia Spazio, Italy)
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PRIMA Metrology System
(ESO and IMT, Switzerland)
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The PRIMA Planet Search
Consortium
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Motion of the Sun, Viewed
Pole-on from 100 pc

Amplitude:
500 pico-radians

100 micro-arcsec
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Requirements for Astrometric
Planet Detection
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Deriving Inclination from
Astrometric Observations
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Goals of Astrometric Planet

SUrveys
e Accurate mass determination for planets detected
in radial-velocity surveys (no sin I ambiguity)
e Frequency of planets around stars of all masses
« Relation between star formation and planet formation

e Gas giants around pre-main-sequence stars
* Time scale of formation, test formation theories

e Coplanarity of multiple systems
» Test interaction and migration theories

e Scarch for Solar System analogs
» Detection of icy or rocky planets
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Simulation of Planet Observations
with the VLTI
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PRIMA Error Budget

e Step 1: Construct tree of all anticipated error
sources for PRIMA

» Systematic approach needed, but still danger of
overlooking important effects

* Methodological difficulty: many differences of
large numbers

e Step 2a: Allocate admissible errors (top-down)

e Step 2b: Estimate predicted errors of
components / sub-systems etc.

e Step 3: Iterate until 2a and 2b match
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Total Astrometric Error
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Principal Current Error Budget
and Calibration Activities

e Fringe tracking and FSU output

e Dispersion effects and spectral channels in FSU
e Metrology zero-point calibration

e Polarization calibration

e Calibration of narrow-angle baseline
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Fringe Measurement Requirements

e Fringe measurement precision 1s essential
« Substantially better than 1° needed

e Rcliable fringe 1dentification 1s essential
* Fringe jumps are unacceptable
* Dispersed fringe detection 1s the best scheme

e Fringe tracking robustness 1s important

« Atmosphere can be very unstable (Kolmogorov
predictions cannot be used)

* Need to recover from spells of bad seeing quickly
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Types of Error

e Random errors with zero mean

e Systematic errors which can be accurately
corrected

e Systematic errors which are difficult to correct
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Random Errors with Zero
Mean

e Eliminated by: Averaging many independent
measurements — residuals easily determined by
scatter 1n independent measurements

e Example: Effect of atmospheric turbulence after
systematic contribution subtracted
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Easily Corrected Systematic
Errors

e Eliminated by: Accurate measurements of well-
defined, easily measured parameters and
application of basic physics

e Example: Relativistic effects due to the motion
of Paranal with respect to the solar system
center, and due to the gravitational potential
well of the Sun and planets
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Difficult Systematic Errors

e Eliminated by: Minimizing the error through
the hardware design or observing strategy, and
then trying to estimate the remaining error as
best as possible

e Examples: Effect of cold outside air blowing
through the VLTI ducts and tunnels, permanent

or seasonal “wedge” of atmosphere from sea to
mountains
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Resolution of Problems

e If asingle error term 1s too large, one can take
one of several measures to solve the problem:

1. Change the observation strategy

2. Change the calibration strategy

3. Improve the hardware performance
4. Change the hardware design

e [Frror budget and Calibration / Operation
Strategy are intimately related
« Error budget reflects residuals after calibration
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PRIMA Calibration Strategy

e PRIMA data are essentially quadruple-differential
1. Target— Reference

2. Stellar beam — Metrology beam
3. Beam swap 1 — Beam swap 2
4. Sky position at time 1 — Sky position at time 2

e In addition, there 1s a complicated relation between
sky position and observed delay

e There 1s no way to meet specifications without getting
all differences right = calibration and observing
strategy are essential
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Difference Target — Reference

e Random error: atmospheric anisoplanatism
* Fundamental limitation of ground-based astrometry
e Can 1n principle be integrated out

e Systematic error: PRIMA metrology zero point

» Calibrated by 1njecting the light from the two stars

alternatingly into the two feeds of the star separator
(“beam swap’)
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Difference Starlight — Metrology “sw»

® Three fundamental sources of error
e Dispersion between the two wavelengths

* Beam walk on optical surfaces (different footprint
of stellar and metrology beams)

e Misalignment (metrology not on optical axis of
telescope)

e Many complicated terms 1n error budget
* Temperature differences, ...

« Alignment, straightness of delay line rails, ...
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Difference Beam Swap 1 — Beam
Swap 2

e Good alignment of 1mage de-rotator / star
separator required

e Sensitive only to non-linear optical path drifts
in light ducts (reduces some of the problems on
previous slide)

e Introduces more stringent requirements on
speed of re-acquisition

e Potential interruption of metrology beam during
polarization swap
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Difference Time 1 — Time 2

e Some errors (e.g., “wedge”) can be minimized
by always observing at same hour angle

 Implications for scheduling (“absolute time driven’

versus “integration time driven’)
e Observing at many hour angles during one
night produces over-constrained system
e Enables consistency checks
 Alternative calibration strategy

 Implications for observing efficiency
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Metrology Zero-Point Calibration
Strategy

e Use 1image de-rotator to swap target and
reference star beams

e Each observation consists of a few (perhaps 2)
“swap cycles”

e Eliminates metrology zero point

e Applies time filter to differences between
metrology and star light

e Solves main 1ssue with dispersion between starlight
and metrology 1n the delay lines and feed system
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Polarization Calibration

e PRIMA FSUs use S polarization for measuring
fringe sine, and P for fringe cosine

e Potential concerns:

 Phase shift between S and P polarizations
 Difference 1n efficiency for S and P
e Polarized stars

e Calibration strategy: exchange roles between S
and P 1n (or close to) FSUs
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Preferred Implementation

e Exchange role of S and P inside FSU by
rotating A/4 plate by 90°

e Position 1: sine from S, cosine from P

e Position 2: cosine from S, sine from P

e Can construct complete set of observables (A,
B, C, D) from S and P separately

* Non-simultaneous, but should be ok for referenced
phase

e No loss 1n efficiency, complete symmetry
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Operational Implications of Beam
Swap Strategy

e Each observation broken into short segments
» Typical sequence: 1s, 2s, 2p, 1p, 1p, 2p, 2s, 1s
e Time needed to swap beams must be minimized

* For example 2 minutes integration, 30 sec for swap

e Role of FSUI and FSU2 get exchanged with
each swap

* Fringe tracking signal alternates between FSUs
e Detector read time has to be changed
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Baseline Calibration

e Requirement on knowledge of baseline vector
1s of order 50 um

e One of the most difficult terms 1n error budget
 What defines baseline (very complex 1ssue)?
* How sophisticated a telescope model do we need?

» Transfer of wide-angle to narrow-angle baseline

e Baseline calibration strategy (observations of
stars with wide sky distribution) depends on
attainable cadence of observations
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Wide-Angle Baseline

e The wide-angle baseline 1s defined by delay
measurements of many stars distributed over
the sky

» Can be related to telescope pivot point

e Can be calibrated from science data (if they have
sufficient sky coverage) or additional observations

e Main error sources:

« Non-intersecting telescope axes
» Telescope flexure

e Temporal drift of optical elements in beam train
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Narrow-Angle Baseline

e The narrow-angle baseline 1s defined by the
mechanism that combines the starlight with the
metrology (STS)

e In the PRIMA STS design, the narrow-angle
baseline 1s defined by the image of the “optical
pivot point” of M11 1n the entrance pupil

* The “optical pivot point” 1s defined by the footprint
of the metrology on M11

e The narrow-angle baseline must be computed
from opto-mechanical model of the ATs

Pasadena 07/29/2005 Andreas Quirrenbach 41



Baseline Calibration Strategy

e Collect delay data from one or several nights

e Use telescope model with delay data to
compute separation vector of telescope pivot
points (wide-angle baseline)

e Use optical prescription and FEM of telescopes
to compute narrow-angle-baseline

e Main difficulty: mechanical stability of ATs,
tight tolerance of knowledge for M1 — M10
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Data Analysis Facility

e Data base with all observations for several
years

® Tools to select and visualize sub-sets of data

e Identification and removal of trends
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Proper Motion, Parallax, and
Planet Signature

e d=50pc

e 1L =50 mas yr!
oM, =15M,
oc=0.2
ea=06AU

e Planet signature
shown 30x -~
exaggerated ; 5

Declination (milliarcsec)
3

Right ascension (milliarcsec)
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Why Do We Need a DAF?

e Astrometric precision requirement: 50 prad
* Equivalent OPD precision requirement 5 nm / 100m

e Data have eleven (!) significant digits

e No way to check integrity without doing
quadruple-differencing first

e Quadruple-difference dominated by parallax /
proper motion
* 10,000 times larger than precision requirement
e Natural time scale 1.5 years
* Only three free parameters = can (must) be fitted
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Need for a DAF (cont’d)

e [f something goes wrong, we’ll know 1.5 years
later!

e DAF 1s an indispensable tool for debugging the
interferometer

 Error budget 1s complicated — we may overlook
important terms

e 1.5 year time scale = record everything

e Time differencing = need to do consistent
data analysis for years worth of data
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More Benefits of DAF / IDAF

e Systematic calibration of instrument (not of individual
data sets)

 Better quality of calibration

« More efficient observing
 Better diagnosis of instrumental problems
 Instrument useable by whole community

e Version control for calibrated data
* Needed for determining motions over many years

 Ability to improve calibration when problems are 1dentified

e Minimization of overall calibration effort
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Summary

e First phase of PRIMA optimized for astrometry
with the 1.8m Auxiliary Telescopes
* Goal to reach 10 pas class precision
 Planet detection 1s the main scientific driver

e PRIMA implementation 1s well underway

* All components sub-contracted by ESO to various
vendors

 Differential delay lines, operational analysis, and
data analysis software by Planet Search Consortium
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Positions Available!

e Openings for postdocs
and temporary staff

e Some prior experience in
interferometry desired

e Exciting project, pleasant
international team

e Sce me during the break
for more information!

I W

to join our team!
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