

(Long-Baseline) Interferometric Measurements of Binary Stars

A. Boden
MSC/Caltech & GSU

C. Hummel – USNO/ESO

G. Torres & D. Latham – CfA

H. McAlister – CHARA/GSU

Outline

- Introduction:
 - Why study binary stars (with an interferometer)...
 - > What kinds of binary star measurements are interesting
 - > What kinds of binary stars are best suited to interferometry
- History of Interferometric Binary Star Measurements:
 - Classical imaging
 - > Speckle
 - > Long-baseline interferometry
- How Do Interferometers Measure Binary Stars
 - Visibility model
 - > Interpretation
- Case Study: HD 195987
 - > Why is the system interesting
 - Measurements & integrated orbit modeling
- > What Next?
- > Summary

Why Study Binary Stars?

Don't try to teach a pig to sing...it doesn't work, and it annoys the pig!

- > Multiplicity (binary) is a pervasive phenomenon:
 - > Multiplicity's role in the star formation process
 - ❖ Most stars likely form in multiple associations
 - > Multiplicity's role in the field:
 - * Two out of three solar-like stars have a stellar companion (DM91)
 - > Multiplicity's role in stellar evolution:
 - ❖ The cornucopia of interacting binary stars
- > Binary star interactions are SIMPLE, allowing insight into the properties of the components
 - Mass (through physical orbit)
 - Radius
 - > Luminosity (through photometry, physical & angular orbit)

The Historical Lexicon of Binary Stars

- Eclipsing Binaries
 - > Systems aligned so that components occlude each other (constrains inclination)
 - > (By phase-space arguments) highly likely to be close => short-period
- Spectroscopic Binaries
 - > Systems whose kinematics and component properties yield detectable component radial velocity variations
 - > SB1 single-lined binaries
 - > SB2 double-lined binaries
 - > Most (essentially all) eclipsing binaries are spectroscopic binaries
 - * Combination directly yields masses, radii, *less* directly luminosity
- Visual Binaries
 - > Systems whose components can be resolved into two distinct sources...
 - ...Allowing astrometry
 - Motion in time yields orientation of orbit (inclination)
 - Combined with SB2 => masses, distance (luminosity)

What Kinds of Binary *Information* is Interesting?

- Multiplicity statistics
- Orbit characteristics statistics as remnants of the formation process
- Component properties
 - > Mass, Radius, Luminosity (the "big" three)
 - Elemental Abundance
 <u>critical</u> to place M, R, L in proper context
 - > Rotation

 as tracer of tidal interaction & internal convective structure
- Distance ("orbital parallax") for direct & indirect luminosity calibration
- Age
 using binary systems as chronometers

What Kinds of Binary *Measurements* are Interesting?

- Photometry
 - ➤ System and/or component brightness → luminosity
 - > Detection and measurements of binary eclipses
 - > Tracer of stellar rotation period
- "Imaging" (i.e. real imaging, speckle, interferometery)
 - > Inference of association
 - > Astrometry
 - * "Absolute" (relative to some "quasi-inertial" fiducials)
 - * "Relative" (two components relative to each other)
- Spectroscopy
 - > Astrophysics of components
 - "Velocimetry" gauging the line-of-sight motions of components

What Binaries are Suitable for

Known Spectroscopic Binary Distributions

From Taylor, Harvin, and McAlister 2003

Log Greater Nodal Sep (mas)

Log Period (d)

"The Deal" with Binary Star Studies

- In (essentially) all cases, observational objective is to determine "physical orbit" (physical dimensions, orientation), this provides component masses
- Eclipsing systems provide that with spectroscopy ("spectroscopic orbit") & photometry (inclination)
- Non-eclipsing systems require integrating the "visual orbit" to determine system orientation
- Ratio of physical and angular scales (e.g. semi-major axis) yields direct system distance (duh)

MSW -- A

25-29 July 2005

This slide left intentionally blank

> Why?

Describing Binary Systems

- (By definition) binary systems have *Primary* (A) and *Secondary* (B) components
- We describe binary kinematics with *orbital elements*
 - Four elements (a, e, P, T₀) describe motion in the orbital plane
 - Three elements (Euler angles, i, Ω , ω) define orbital plane orientation
 - Three elements (K_A, K_B, γ) describe rates projected onto the line-of-sight
- Additional parameters may describe component properties
 - \triangleright Diameters (θ_A, θ_B)
 - > Intensity ratio (r = B/A)

Historical Binary Studi

Interferometers

- Classical imaging/
- Speckle
- Long-baseline inte
 - > Capella with Mt W?
 - α Vir with intensit on the state of the sta

 - **HST FGS**
 - **NPOI**
 - PTI
 - **SUSI**
 - KI
 - **CHARA**

Declination Right Ascension offset [mas] MSW --© American Astronomical Society • Provided by the NASA Astrophysics Data System

THE ORBIT OF φ CYGNI MEASURED WITH LONG-BASELINE OPTICAL

DECEMBER 1992

THE ASTRONOMICAL JOURNAL

25-29 July 2005

What Does Interferometric Binary Data Look... Like: A "Typical" Night of PTI V² Data...

Incoherent Spec V² Time Trace -- 100271.sum

Long-Baseline Interferometry Observables

- > (L-B) Interferometers provide visual (i.e. astrometric) information on binary stars
- > Interferometric visibility as proxy for relative component astrometry

$$V_{binary} = \frac{P_{A}V_{A} + P_{B}V_{B}}{P_{A} + P_{B}} = e^{-2\pi i(u\alpha_{1} + v\beta_{1})} \frac{|V_{A}| + r|V_{B}|e^{-2\pi i(u\Delta\alpha + v\Delta\beta)}}{1 + r}$$

$$V_{binary}^{2} = V_{binary}^{*}V_{binary} = \frac{|V_{A}|^{2} + r^{2}|V_{B}|^{2} + 2r|V_{A}||V_{B}|\cos(2\pi(u\Delta\alpha + v\Delta\beta))}{(1 + r)^{2}}$$

$$= \frac{|V_{A}|^{2} + r^{2}|V_{B}|^{2} + 2r|V_{A}||V_{B}|\cos(\frac{2\pi}{\lambda}B \bullet \Delta s)}{(1 + r)^{2}}$$

 Δs – relative separation r – relative intensity B – baseline

Separation Vector Modeling

Intersection Track

Projected baseline motion (earth from rotation) varies relative
geometry

MS

 This geometry variation allows (straightforward!) estimation of binary separation

Integrated Modeling I

- Separation vector modeling works in many cases, but breaks down when:
 - System is marginally resolved, providing little visibility evolution on a given night
 - Few data points are available on given night
 - System moves appreciably during night
- Solution: integrated modeling orbit directly from visibilities (just like RV > Orbit modeling)
- > This is what (essentially) everyone in the business does

Retrograde Orbit 10 \sim P = 10.213 d (FT) $a = 10.33 \pm 0.1 \text{ mas}$ e = 0 (FT) $i = 95.8 \pm 0.2 \text{ deg}$ $\pi_{\text{orb}} = 86.9 \pm 1.0 \text{ mas}$ 0 Relative Dec (milliarcsec) -2 -5 ι Peg Orbit Trace -10 Secondary at Conjunction Secondary at To -10 10 5 Relative RA (milliarcsec) Calendar Date 07/18 07/18 07/19 07/20 07/21 07/19 07/20 07/21 07/22 00:00 12:00 00:00 12:00 00:00 12:00 00:00 00:00 12:00 0.8 0.6 0.4 0.2 1 Peg Model Predict 0.1 Fit Residuals 0.05 -0.05 50648 50648.5 50650 50650.5 50651 50651.5 Boden et al 1999 HJD - 2400000 (days)

25-29 July 2005

Integrated Modeling II

While you're at it, you might as well also directly integrate with RV measurements

Boden & Lane 2000

Case Study: HD 195987

- ➤ HD 195987 is a modestly low-metallicity ([Fe/H] ~ -0.5) double-lined spectroscopic binary (SB2)
- > (Essentially) no eclipsing system constraints for metalpoor stellar models
- > RV Orbit determine as part of Carney-Latham highproper-motion survey
- Long-term velocity monitoring CfA
- Visibility orbit from PTI circa 1999
- Integrated orbit solution (Torres et al 2002)
- First (precision) O/IR interferometric solution for "metallicly-challenged" system

HD 195987 RV Orbit

- Modest eccentricity $(e \sim 0.3)$ double-lined orbit
- ▶ 0.1 contrast ratio in the visible TODCOR extraction of RV lines
- 73 double-lined measurements

T0 (d)	49404.825 ± 0.045
е	0.3103 ± 0.0018
γ	-5.867 ± 0.038
KA	28.944 ± 0.046
KB	36.73 ± 0.21
ω	357.03 ± 0.35

HD 195987 Physical Orbit

- Simultaneous solution to both RV and PTI visibility data
- Complementary information about "mutual" elements (P, T_0, T_0)

 $e, \omega)$

25-29 July 2005

Р	57.32178 ± 0.00029
TO	51353.813 ± 0.038
γ	-5.841 ± 0.037
KA	28.929 ± 0.046
KB	36.72 ± 0.21
а	15.378 ± 0.027
е	0.30626 ± 0.00057
i	99.364 ± 0.080
Ω	334.960 ± 0.070
ω	357.40 ± 0.29

HD 195987 System Parameters

2% Primary Mass, 1% Secondary Mass

Parameter	Primary	Secondary
Mass (M)	0.844 ± 0.018	0.6650 ± 0.0079
Teff (K)	5200 ± 100	4200 ± 200
oPlx (mas)	46.08 ± 0.27—	Factor of two
Dist (pc)	21.70 ± 0.13	better than Hipparcos
MV (mag).	5.511 ± 0.028	7.91 ± 0.19
MH (mag)	3.679 ± 0.037	4.835 ± 0.059
MK (mag)	3.646 ± 0.033	4.702 ± 0.034
V-K (mag)	1.865 ± 0.039	3.21 ± 0.19

HD 195987 Stellar Model Comparisons

- Having determined precision component parameters, it's time to test stellar models!
- No single set of models do a perfect job of predicting HD195987 component parameters
- observationalist defines progress...

This is how an

25-29 July 2005

What Now?

do?

We've been doing this binary thing for a while, what is there possibly left to

- Component parameters for stars that are not well covered by eclipsing systems
 - Low-mass stars
 - > Subgiant & Giant stars
 - > Pre-main sequence stars
 - > Metal-poor & metal-rich stars
- Systems where there's "extra" physics
 - > Tidal interaction & angular momentum evolution
 - Interacting systems
 - > Higher-order (hierarchical) systems
- Systems where there is science beyond/in addition to the component properties
- > e.g. Cluster distances and ages 25-29 July 2005

Credit: Hipparcos Web Site

Low-Mass Stars

- Nature is inordinately fond of Mstars, yet few high-precision mass/luminosity determinations made among such stars
- System are difficult primarily because they are dim & elemental abundances hard to measure

- The sensitivity of HST FGS make such low-mass systems the (nearly) unique purview of FGS
- With an HST servicing mission appearing more likely, prospects for additional work in this area appear good

24

Evolved Stars

- Surprisingly few high-precision tests exist of stars off the main sequence...
 - 12 Boo
 - Omi Leo

2

-2

4

Relative Dec (mas)

Retrograde Orbit

2

But some more are on the way...

P = 9.60 d

12 Boo Orbit Trace Line of Node

V² Phase Coverag 12 Boo Primar

12 Boo Secondary at Periastro

Relative RA (mas)

 $a = 3.42 \pm 0.03$ mas $e = 0.193 \pm 0.001$

 $i = 108.3 \pm 0.2 \deg$

 $\pi_{\text{orb}} = 27.5 \pm 0.2 \text{ mas}$

12 Boo

HD 174881

- HD 174881 is a pair of bona-fide post He-flash giants
- Secondary (lower-mass component) is larger, brighter, and cooler than primary
 - > Primary envelope loss
- First-of-a-kind precision measurement of a Heburning giant core

Torres & Boden 2005 (in prep)

Chronometry: HD 9939

- Kinematically selected "metal-poor" system (Carney & Latham sample)
- System is actually slightly super-solar(!)
- Primary dead in H-gap => system age very well determined (9.1 +/- 0.25 Gyr)

HD 9939 Primary/Track HD 9939 Secondary/Track

> 8.5 Gyr Isochrone 9.0 Gyr Isochrone 9.5 Gyr Isochrone

> > V - K (mag)

9.40 Gyr

-7.00 Gyr

2.5

Challenges <u>some</u> notions of age/metallicity relations

9.16 Gyr ~

-9.09 Gyr

[M/H] = +0.05

1.5

Direct Orbit

P = 25.209 d

 $a = 4.944 \pm 0.018$ mas

 $e = 0.1017 \pm 0.0001$ $i = 61.56 \pm 0.25 \text{ deg}$

 $M_{
m K}$ (mag)

3

4

PMS Binary HD 98800 B

- HD 98800 is PMS quad system with two SBs; B is an SB2 with 315d period & mid-IR excess
- Physical orbit estimated with KI V², HST FGS, & RV data; yielding dynamical masses of two low-mass PMS components
- Suggestion that HD 98800 (& TW Hya stars) have sub-solar metallicity

RV Data from Torres et al 1995

0.25

0.5

Orbit Phase (dimensionless)

0.75

-15

Hierarchical Systems

- η Vir was a known triple system recently done by NPOI (Hummel et al 2003)
- Non-coplanarity of outer and inner orbits established (diff 5.1 +/- 1.0 deg)

The Triple System η Vir Hummel et al 2003

Summary (what to take away...)

- Binaries are important systems to study"The hydrogen atoms of stellar astrophysics" argument
- LB Interferometers have an important role to play in binary star studies:
 - > Highest-resolution technique available
 - Making "visual" binaries out of "spectroscopic" ones
 - > Resolving more distant systems
 - > "Competitive" accuracy with eclipsing systems
 - > Providing angular scale (distance!) for eclipsing systems
 - > Providing additional component diversity beyond eclipsing systems
- LB Interferometers can also provide new windows into physics beyond component parameters
 - > Tidal interactions
 - > "Yardsticks and chronometers"
- > (At least I feel) there's a lot left to do...
 - > Establishing component radii (precision mass/luminosity/effective temperature)
- All interferometers should study binary stars
 (...to the exclusion of *all* other science...)
- > Enjoy BC...

The orbit of β Centauri determined from SUSI observations

- 1995 MAPPIT Observation
- 1997 SUSI Observations
- 1998 SUSI Observations
- 1999 SUSI Observations
- 2000 SUSI Observations
- Fitted Orbit

Period: 357.0±0.3 days Inclination: 67.5±0.4 deg Semi-major axis:

25.3±0.2 mas

Courtesy J. Davis

Admonitions From P. Tuthill

- > Imaging may well be the "Holy Grail", but the distinction between imaging and modeling is sometimes unclear
- In all cases, you want to make optimal use of your data
- Usually this means working "as close to your data" as possible

HD 195987 Visual Orbit

- > a" ~ 15 mas; easily resolvable with PTI
- K-band operation facilitates measurement of secondary (r ~ 0.38)

	41
P (d)	57.3298 ± 0.0035
T0	51354.000 ± 0.069
е	0.30740 ± 0.00067
а	15.368 ± 0.028
i	99.379 ± 0.088
Ω	335.061 ± 0.082
ω	358.89 ± 0.53

Components rendered 3x actual size