Imaging Astrometry with HST

Jay Anderson Rice University jay@eeyore.rice.edu

HST's Main Distinction

It is above the atmosphere

- Benefits
 - More concentrated PSF: fainter stars, more crowded fields
 - Very stable observing platform
 - Fewer color effects than ground-based astrometry
- Limitations
 - Older technology
 - Download rate
- Compromises
 - Small field of view
 - Undersampling in all detectors

Scientific Possibilities

1) Cluster-membership

- Deeper LFs, IMFs
- H-burning limit, WDs
- Tidal limit studies
- Equipartition

2) Internal Motions

- Dispersions, geometric distances
- Rotation
- Anisotropy
- Heavy Binaries, central BH
- Drukier 2003, McNamara 2004

3) Orbits

• For clusters or even galaxies (Piatek 2005)

4) Parallax measurments

- Pleiades, some NSs done
- Orion in cy14

5) Planet searches

 Possible, but orbitconsuming

NGC 6397 CMD

NGC 6397 with PMs

NGC 6397 (King et al 1998)

47 Tuc (Anderson & King 2001a)

47 Tuc Rotation

All HST Astrometry is Differential Astrometry

- Absolute pointing accuracy is 1"
- Even more "differential" than from ground
 - Small FOV (3' x 3' is the biggest detector)
 - Sensitivity
 - Small instabilities in distortion
- GAIA and large-field imager surveys may change this someday
- For now, all positions must be measured with respect to something else

General Differential Astrometry

Differential astrometry can be divided into two tasks:

- 1) measuring positions for individual stars in individual images
- 2) comparing positions measured in one image with those measured in another

Task 1: Measuring positions in images

- Ground-based approach
 - Gaussian or Moffat function
- Complications for undersampled detectors
 - Where is the star within the central pixel?
 - Not as impossible as you might think
 - "Stars have no hair"
 - 3 parameters: (x,y,f)
 - The ideal PSF for astrometry: Π
 - The challenge for undersampled images: translate pixel distribution into a position

Task Two: Comparing positions in different images

- Each image is taken in its own frame
 - We do not know much a priori about this frame
 - We depend on common stars to tell us how frames are related to each other
- To compare positions, we need to transform positions into a common frame
 - Remove distortions as well as possible
 - Linear transformations between frames
 - General 6-parameter linear transformations (not 3)
 - Common stars form the basis
 - Often require "local" transformations

TASK 1: Measuring Positions in individual images

GOAL: distill the 5x5 array of pixels into (x,y,f)

Assume "semi-crowded" regime

1) The PSF is crucial

- Centroid/Gaussian-fitting contains systematic error called "pixel-phase bias"
- 1-D illustration: one profile, two PSFs
- Fundamental degeneracy due to undersampling
- Need extra information

Pixel-phase bias: centroid positions

Two PSFs, one pixel profile

Task 1: continued (II)

- 2) Ways to model the PSF
 - DAOPHOT was designed for well-sampled photometry
 - Photometry vs. Astrometry: sums vs differences
 - Traditional PSFs
 - Analytical functions
 - Explicit integration over pixels
 - Not flexible models
 - Back to the basics: a thought experiment

A thought experiment I

A thought experiment II

We would like:

a model to tell us what fraction of light should be in each pixel as a function of where the star is centered

Task 1: continued (III)

3) The effective PSF

- Inspiration from Lauer (1999): "effective" image
- The instrumental PSF: we never see it, very indirect
- The "effective" PSF
 - Mathematically, ePSF = iPSF convolved with the PRF
 - It is a 2-d smooth function of $(\Delta x, \Delta y)$
 - Tells us the fraction of light that falls in a pixel at $(\Delta x, \Delta y)$

iPSF to ePSF

Task 1: continued (IV)

Economies of the ePSF

– Fitting stars:

$$P_{ij} = SKY + FLUX*ePSF(i-x,j-y)$$

- Fit directly, no integration
- Linear relationship
- Solving for ePSF:
 - Each pixel in each star image gives one point-estimate:

$$ePSF(\Delta x, \Delta y) = (Pij - SKY)/FLUX$$

- We see the ePSF directly in star images
- Enormous number of point-samplings
- How to build a simple model?

Each star samples the ePSF at an array of points

Many ePSF point-samplings from many stars

The ePSF is seen directly in the stellar images

Task 1: continued (V)

4) Modeling the ePSF

- How to go from a myriad of point sampling to a simple predictive model?
- Analytical functions?
- We adopt a simple empirical grid, supersampled x4
 - Distill information from many samplings into grid points
 - Constraints
 - 1) overall normalization
 - 2) sub-pixel normalization
 - 3) centering
 - 4) smoothness
 - When properly modeled, the results are very good
- We still need to remove degeneracy

Pixel-phase bias

Task 1: continued (VI)

5) PSF variability

- Spatial variability
 - WFPC2: 3x3 array of PSFs for each chip
 - WFC: 9x5 array for each chip (9x10 overall)
- Color variability
 - Must construct one PSF for each filter
 - No observed star-color effects
- Temporal variability
 - Surprisingly stable over time
 - WFC shows perturbations of $\sim 1\%$

Task 1: continued (VII)

6) Fitting stars

- Chi squared minimization for (x,y,f)
- Gradient search or grid search
- Accuracy for bright stars in an image
 - WF chips: 0.02 pixel --- 2.0 mas
 - PC chip: 0.02 pixel --- 1.0 mas
 - WFC : 0.01 pixel --- 0.5 mas
 - HRC : 0.01 pixel --- 0.25 mas
- The final proper-motion accuracy still depends on transformations

Astrometric and photometric errors

PSF summary

- Hard concepts, new ideas
- Anderson & King (2000) gives details
- The ePSF may not be the only way, but seems to be the simplest
- Much is already programmed, no need to start from scratch

Task 2: Comparing positions

- Header information is only good to about 1"
- We must define our own reference frame
- First, we need to address distortion
 - HST different from ground
 - Orientation
 - Stability
 - FOV
 - Precision

Sources of distortion in HST (I)

1) Periodic distortions

- WFPC2: 34-row skip, 0.03-pixel amplitude
- WFC: 68-column pattern, 0.005-pixel amplitude

2) General optical distortions

• WFPC2:

on-axis, but each chip refocused 3 pixels over 400 pixels; see Anderson (2001)

• WFC/HRC:

off-axis, rhombus shape FOV huge linear and other terms (10%) originally modeled by Meurer et al (2002)

Sources of distortion in HST (II)

3) Filter-dependent distortions

- WFPC2: small, regular effect (Platais et al 2003)
- HRC/WFC: each filter perturbs the solution
 - Amplitude 0.15 pixel
 - Spatial scale: 100 pixels
 - I model with a table of residuals
 - Available in my ISRs on STScI's website

4) Breathing-induced distortions

- Focus-variations around orbit, cannot model predictively
- Low spatial frequency
- Linear ~ 0.1 %, smaller in higher-order terms
- Varies from exposure to exposure

5) Secular distortions

- WFPC2: chips move at 1 pixel / 10 years
- WFC: chips move in together, change linear terms

The Transformations (I)

- The basis for the transformations: common stars
 - (x1,y1,x2,y2) associations for N stars
 - 6-parameter linear transformation:

$$x2t = A*(x1-x10) + B*(y1-y10) + x20$$

$$y2t = C*(x1-x10) + D*(y1-y10) + y20$$

- A, B, C, D are linear terms
- x10, y10, x20, y20 are centroids

The Transformations (II)

Transformations are only as good as the stars that define them

- Assumption: stars in same place in space
 - Stars have measurement error
 - Stars move!
- Imperfect associations; what to do?
 - Use only well-measured stars
 - Iterate to include only consistent associations
- What is the astrometric goal?
 - Cluster-field separation: use only CMD-member stars
 - Parallax: use background objects only
 - Internal motions: use all stars
- Remember: everything is measured with respect to something else

The Transformations (III)

To minimize the effects of uncorrected distortion:

Use local transformations

- Define a local reference net for each star
- Use nearest 25, 50, or 100 stars
- Statistical corrections necessary
- Do not use a star in its own transformation!

An additional complication

- Usually not just one observation at each epoch
- Need to use transformations within an epoch

Planning Observations

- 1) Dithering
 - To detect any systematic errors
 - For PSF reconstruction
 - Not necessary for distortion solution
- 2) Repeat observations with similar pointings
 - Minimize distortion errors
 - Maximize field coverage

Conclusions

Science to come

- Many projects in the works
- Very accessible archive
 - Rich with multiple epochs already
 - Even richer with 2nd-epoch flexibility
 - Parallax requires proper motion

Remaining challenges

• Measuring galaxies: GSF?

Applications beyond HST

• Ground-based reductions could also benefit from the ePSF approach and local transformations

References

Anderson & King 1999 PASP 111 1095

Anderson & King 2000 PASP 112 1360

Anderson & King 2003a AJ 126 772

Anderson & King 2003b PASP 115 113

Anderson & King 2004 ISR 04-15; STScI website

Drukier, Bailyn Van Altena, & Girard 2003 AJ 125 2559

King, Anderson, Cool & Piotto 1998 ApJ 492 L37

Lauer 1999 PASP 111 227

McNamara, Harrison, Baumgardt 2004 ApJ 602 264

Platais, Anderson, & Koekemoer WFPC2 ISR 03-02, STScI

Piatek, Pryor, Bristow, Olszewski, Harris, Mateo, Minniti, & Tinney 2005 AJ 130:95-115