Fringe Parameter Estimation and Fringe Tracking

Mark Colavita 7/8/2003

Outline

- Visibility
- Fringe parameter estimation via fringe scanning
 - Phase estimation & SNR
 - Visibility estimation & SNR
- Incoherent and coherent averaging
- Estimator biases
- Fringe tracking

Visibility

- Visibility is the fundamental observable for interferometric imaging
 - Visibility is related to the object irradiance distribution via the van Cittert–Zernike theorem
- Visibility is generally complex, viz. $\Gamma = V e^{j\phi}$
 - In optical/IR interferometry

"visibility" generally refers to the visibility amplitude: V = $|\Gamma|$

- Phase is just $arg(\Gamma)$
- While object visibility can be estimated with a two-element interferometer through the atmosphere, to get true object phase requires either phase referencing (multi-beam) or closure phase (3 apertures)

Measuring Visibility

•Visibility is just the contrast of the spatial fringe pattern

•Or using the traditional Michelson definition:

$$V = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}}$$

0 < V < 1

Measuring Visibility

- Most measurement schemes involve converting the spatial pattern to a temporal pattern
 - We know how to measure the contrast of an electrical sinusoid
 - These are all variants of schemes used for phase shifting interferometry (PSI) for optical testing
 - » Options
 - Step or continuous scanning
 - 4, 6, or 8 bins
 - Triangle or sawtooth waveform
 - NB: all this discussion is in context of a fringe-tracking interferometer than scans over a single interference cycle

Fringe Measurements (PTI, Keck example)

- Fringe-scanning modulation, implemented on delay line
- Sawtooth waveform to minimize number of reads per frame
- Retrace occurs during array settling time
- A, B, C, D ¼-wave intensity bins computed as

- A = a - z, B = b - a, etc.

• Let X = A - C, Y = B - D, N = A+B+C+D

$$f = \arctan\left(\frac{Y}{X}\right)$$
$$V^{2} \propto \frac{X^{2} + Y^{2} - \text{bias}}{N^{2}}$$

- Visibility Estimation can also be understood as a standard communication problem, aka
 - Coherent demodulation
 - Quadrature demodulation
 - Matched filtering
- Use fringe scanning to convert spatial pattern to a temporal pattern

$$I = N(1 + V\cos(t + f))$$
$$= N + X\cos t + Y\sin t$$

$$\hat{f} = \tan^{-1} \frac{\hat{Y}}{X}$$

$$\hat{X}$$

$$\hat{N}V \propto \sqrt{\hat{X}^2 + \hat{Y}^2}$$

$$\hat{V} \propto \frac{\sqrt{\hat{X}^2 + \hat{Y}^2}}{N}$$

4-Bin Algorithm

• Approximate sines, cosines with square waves

Estimating Phase

• Typically
$$\hat{f} = \tan^{-1} \frac{Y}{X}$$

 $SNR = \frac{1}{s_f} = \sqrt{g \frac{1}{2} \frac{N_{tot}^2 V^2}{N_{tot} + bs_{cds_read_noise}^2}}$

 ∞ √N V, photon-noise limited ∞ N V, read-noise limited

It's a non-linear estimator; SNR >~ 3 for proper phase estimates

Example: To obtain SNR = 5 with $V^2 = 0.5$

125 phots, total, photon-noise limit 300 phots, total, with 10 electrons read noise

Improving SNR?

4-bin: $\frac{4}{p^2}$

General don't average phase. Can average phasors if phase reference or closure phase – more later

Estimating Visibility

 Usually estimate V², rather than V, to avoid taking a square root on a noisy quantity (adds bias)

$$\hat{V}^2 = \frac{p^2}{2} \frac{X^2 + Y^2 - Bias}{N^2}$$

- Typically, inadequate SNR to get a good estimate in one sample
- Average numerator and N separately

$$\left\langle \stackrel{\circ}{V^2} \right\rangle = \frac{\mathbf{p}^2}{2} \frac{\left\langle X^2 + Y^2 - Bias \right\rangle}{\left\langle N \right\rangle^2}$$

SNR for V²

V² is a squared quantity of Gaussian & Poisson RVs; need 4th-order statistics to compute SNR

Typically assume all noise in numerator; N (in denominator) constant

Photon-noise only
$$SNR \equiv \frac{1}{\boldsymbol{S}_{V^2}} \propto \begin{bmatrix} \sqrt{N}, & N >> 1 \\ N, & N << 1 \end{bmatrix}$$
Read-noise only $SNR \equiv \frac{1}{\boldsymbol{S}_{V^2}} \propto N^2$

NB: when photon-starved, or read noise limited, SNR $\neq \sqrt{N}$ With 2nd or higher-order estimators like for V², can get SNR dependencies steeper than N¹

In general
$$SNR = \frac{1}{\boldsymbol{S}_{V^2}} \propto \left(\frac{N^4}{N^2 + aN^3V^2 + b\boldsymbol{S}_{cds_read_noise}^4}\right)^{1/2}$$

Signal-to-Noise Ratio

Coherent vs. Incoherent Averaging

Incoherent averaging (sum the magnitude squared of the fringe phasor)

- Averaging V² (strictly the numerator term) doesn't require phase stability between samples
 - Can combine many independent estimates of V^2
 - At PTI, 5 spectral channels over 125 sec at 50-100 samples/sec are combined to produce a synthetic white-light V² estimate
 - » Increases final SNR by ~200
 - » Scatter on 25 sec points allow estimation of internal errors
 - SNR increases as $\sqrt{\text{#samples}}$

JPL Coherent vs. Incoherent Averaging

Coherent averaging (coadding: sum the visibility phasor NVe^j)

- Use a phase reference to measure the phasor rotation
- Derotate the fringe phasor (NVe^{$j\phi$} × e^{- $j\phi$ ref})
- Sum the fringe quadratures X+ jY
- Compared to incoherent average
 - No advantage when samples are shot noise limited (SNR $\propto \sqrt{N}$)
 - » Actually, some disadvantage due to extra biases
 - Advantage occurs when samples are photon starved

» SNR gains faster than $\sqrt{\text{#samples}}$

- Can also be used to increase fringe SNR to get an estimator into a linear regime
 - E.g., increase SNR to compute the arctan phase estimate
- Using a phase estimate to rotate phasors to a common angle so they can be coherently averaged is *phase-referencing*, a powerful technique for increasing sensitivity

Signal-to-Noise Ratio with Averaging and Coadding

Estimating Detection Bias Terms, I

- Most detectors have imperfections which must be accommodated to get good measurement accuracy
- Offsets B_?

 $N = N_{raw} - B_N$ (from dark sky) This bias is just dark current a background

This bias is just dark current + background

 $X = X_{raw} - B_X$ (from dark sky) $Y = Y_{raw} - B_Y$ (from dark sky)

With a perfectly linear detector, these biases are zero

JPL Estimating Detection Bias Terms, II

Numerator biases

NUM $\propto \langle X^2 + Y^2 - bias \rangle$

Photon noise

Other Biases

• Atmospheric biases

- Spatial
$$\langle V^2 \rangle \cong \exp(-2\mathbf{s}_f^2) = \exp\left(-2.06\left(\frac{d}{r_0}\right)^{5/3}\right)$$

(slow guiding)

» Single mode fibers can eliminate most of this

- Temporal
$$\langle V^2 \rangle \cong \exp\left(-\left(\frac{T}{T_{0,2}}\right)^{5/3}\right)$$

» Some post-processing calibration possible

- Instrumental
 - Mismatched stroke vs. wavelength
- Longitudinal coherence
 - Off peak of fringe envelope
 - » Narrow spectral channels for science help

7/8/2003

NB: The issue is not the visibility reduction, but its variability

Fringe Tracking

- What: following the interference phase phase tracking to stay on the central fringe to maintain coherence
 - Typically follow to ~radian
 - Maintains high duty cycle; necessary for cophasing
- [There's also envelope tracking, which maintains centration on the fringe envelope, not discussed here]
- Issues
 - Phase measurement already discussed
 - Sampling time
 - Phase unwrapping
 - Fringe centering
 - Atmospheric residuals

Coherence Time and Sample Spacing

- Many different definitions
 - T_{0,2} integration time during which phase fluctuations are 1 rad rms
 - $\tau_{0,2}$ sample spacing for which phase difference = 1 rad rms

$$\tau_{0,2} \cong \frac{1}{4} T_{0,2}$$

- Integration time $T < T_{0,2}$ to maintain coherence (high V²)
 - rms phase fluctuations during interval = $(T/T_{0,2})^{5/6}$
- Sample spacing t < $\tau_{0,2}$ for phase continuity
 - Usually t=T, and this requirement dominates

Phase Continuity

- Phase being measured is typically >> 2π rads
 - But arctan phase estimator $-\pi < \phi < +\pi$
- Phase unwrapping
 - Simple

 $\Phi_i = 2\pi M_i + \phi_i$

» Chose M_i for each sample s.t. | $\Phi_i - \Phi_{i-1}$ | < π

- Better

- » Chose M_i for each sample s.t. | $\Phi_i \Phi_{i \mid i-1} \mid < \pi$
 - Estimate with low pass filter or Kalman filter, matched to sample spacing, atmospheric parameters, etc.
- Sliding window can be used to improve continuity

Tracking Performance

• Typical tracker

» Closed loop bandwidth $f_{\rm c} \approx a/(2\pi)$ for $f_{\rm c} << 1/t$

- rms tracking error $\approx (f_c/f_{G,2})^{5/6}$
 - where $f_{G,2}$ is the two-aperture Greenwood frequency $\propto 1/T_{0,2}$
- Example
 - $\begin{array}{l} \ \ T_{0,2} = 50 \ ms \\ \ \ \tau_{0,2} \ = 13 \ ms \\ \ \ f_{G,2} \ = 11 \ Hz \end{array}$

7/8/2003

- T = t = 10 ms
- $f_c = 5 \text{ Hz} (1/20^{\text{th}} \text{ sample rate})$
- tracking error = 1.9 rads

Fringe tracking etc.

Required Bandwidth

- In standard servo design, you want to optimize parameters to minimize the tracking error
- For the interferometer, you can accurately measure the tracking error
 - Often, you need a small enough tracking error to stay well centered on the fringe
 - You can still co-phase even if the tracking error > 1 rad if you can feedforward to a separate delay line for the secondary channel

Central Fringe ID

- Want to stay on the central fringe
 - Highest contrast best SNR
 - V² for science also refers to central fringe

(Typically, also use spectrometer channels with their longer coherence lengths to reduce sensitivity to tracking errors)

- How?
 - 1) Measure dependence of V² on phase, and move in direction of higher V²
 - Issues
 - » V² estimator typically noisier than phase estimator
 - » Need "wobble" -- natural or induced -- to resolve direction to move

Group Delay Estimation

• White-light fringe = interference peak = phases of all colors match up

E field as function
of group delay **x**
$$E = A \exp(jkx), k = \frac{2p}{1}$$

 $x = \frac{\partial \Phi}{\partial k}$

- Group delay estimate \hat{x} gives absolute fringe position without unwrapping errors
- Why not use all the time?
 - In the infrared, SNR for group delay worse than for phase
 - » More read noise from reading additional channels
 - » Incoherent group-delay estimator includes a noise term proportional to fringe envelope width $\lambda^2/\Delta\lambda$

Group Delay Estimation, cont.

- Usual approach to group delay in the IR
 - » Use white-light phase tracking for high bandwidth control
 - » Use group-delay centering at a lower bandwidth
- Different in the visible (ex: NPOI)
 - » When photon count, no penalty to dispersing
 - » Wide optical bandwidth reduces GD noise
 - Allows use of a coherent delay estimator which has same SNR as WL phase estimator for moderate SNRs
- Other issues
 - » Atmospheric dispersion will introduce differences between the WL phase and the group delay

Conclusion

- You typically measure visibility phase and visibility amplitude by converting a spatial fringe pattern to a temporal one
 - Becomes a matched-filter problem
- You can derive SNR expressions: not everything goes at $\ddot{\mathbf{0}}$ N
 - Leads to differences between incoherent and coherent averaging
- Calibration is critical
 - Stability of biases is what frequently limits data accuracy
- Fringe tracking is implemented using the measured fringe phase

The End

Fringe derotation and stacking (coadding)

Incoherent WL V^2 Time Trace -- 99222.sum

Coherent Spec Y^2 Time Trace -- 99222.sum

JPL Requirements on Fringe Stabilization

Vibrations blur out the fringe - reduce fringe visibility

7/8/2003

Need real-time control of pathlength to $\sim 10 \text{ nm} (1/50)$ for high fringe visibility