Fringe Parameter Estimation and Fringe Tracking

Mark Colavita 7/8/2003

Outline

- Visibility
- Fringe parameter estimation via fringe scanning
	- Phase estimation & SNR
	- Visibility estimation & SNR
- Incoherent and coherent averaging
- Estimator biases
- Fringe tracking

Visibility

- Visibility is the fundamental observable for interferometric imaging
	- Visibility is related to the object irradiance distribution via the van Cittert–Zernike theorem
- Visibility is generally complex, viz. $\Gamma = Ve^{j\phi}$
	- In optical/IR interferometry

"visibility" generally refers to the visibility amplitude: $V = |\Gamma|$

– Phase is just arg(Γ)

• While object visibility can be estimated with a two-element interferometer through the atmosphere, to get true object phase requires either phase referencing (multi-beam) or closure phase (3 apertures)

Measuring Visibility

•Visibility is just the contrast of the spatial fringe pattern

•Or using the traditional Michelson definition:

$$
V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}
$$

 $0 < V < 1$

Measuring Visibility

- Most measurement schemes involve converting the spatial pattern to a temporal pattern
	- We know how to measure the contrast of an electrical sinusoid
	- These are all variants of schemes used for phase shifting interferometry (PSI) for optical testing
		- » Options
			- Step or continuous scanning
			- 4, 6, or 8 bins
			- Triangle or sawtooth waveform
	- NB: all this discussion is in context of a fringe-tracking interferometer than scans over a single interference cycle

Fringe Measurements (PTI, Keck example)

- Fringe-scanning modulation, implemented on delay line
- Sawtooth waveform to minimize number of reads per frame
- Retrace occurs during array settling time
- A, B, C, D $\frac{1}{4}$ -wave intensity bins computed as

 $- A = a - z$, $B = b - a$, etc.

• Let $X = A - C$, $Y = B - D$, $N = A + B + C + D$

$$
f = \arctan\left(\frac{Y}{X}\right)
$$

$$
V^2 \propto \frac{X^2 + Y^2 - \text{bias}}{N^2}
$$

- Visibility Estimation can also be understood as a standard communication problem, aka
	- Coherent demodulation
	- Quadrature demodulation
	- Matched filtering
- Use fringe scanning to convert spatial pattern to a temporal pattern

$$
I = N(1 + V \cos(t + \mathbf{f}))
$$

= N + X \cos t + Y \sin t

$$
\hat{f} = \tan^{-1} \frac{\hat{Y}}{\hat{X}}
$$

$$
\hat{N}V \propto \sqrt{\hat{X}^2 + \hat{Y}^2}
$$

$$
\hat{V} \propto \frac{\sqrt{\hat{X}^2 + \hat{Y}^2}}{N}
$$

4-Bin Algorithm

• Approximate sines, cosines with square waves

Slightly non-optimal, as it's a mismatch to the proper waveform 10-20% more photons needed vs. ideal case But minimizes number of reads

Estimating Phase

• Typically
$$
\hat{f} = \tan^{-1} \frac{Y}{X}
$$

\n
$$
SNR = \frac{1}{S_f} = \sqrt{g \frac{1}{2} \frac{N_{tot}^2 V^2}{N_{tot} + b S_{cds_read_noise}^2}}
$$
\n4-bin: $\frac{4}{p^2}$ 4

 $\propto \sqrt{N}$ V, photon-noise limited ∝ N V, read-noise limited

It's a non-linear estimator; SNR >~ 3 for proper phase estimates

Example: To obtain SNR = 5 with $V^2 = 0.5$

125 phots, total, photon-noise limit 300 phots, total, with 10 electrons read noise

Improving SNR?

General don't average phase. Can average phasors if phase reference or closure phase – more later

Estimating Visibility

• Usually estimate V^2 , rather than V, to avoid taking a square root on a noisy quantity (adds bias)

$$
V^{2} = \frac{p^{2}}{2} \frac{X^{2} + Y^{2} - Bias}{N^{2}}
$$

- Typically, inadequate SNR to get a good estimate in one sample
- Average numerator and N separately

$$
\left\langle \stackrel{\wedge}{V^2} \right\rangle = \frac{\mathbf{p}^2}{2} \frac{\left\langle X^2 + Y^2 - Bias \right\rangle}{\left\langle N \right\rangle^2}
$$

SNR for V^2

V² is a squared quantity of Gaussian & Poisson RVs; need 4th-order statistics to compute SNR

Typically assume all noise in numerator; N (in denominator) constant

Photon-noise only	$SNR \equiv \frac{1}{\mathbf{s}_{V^2}} \propto \begin{bmatrix} \sqrt{N}, & N > 1 \\ N, & N < 1 \end{bmatrix}$
Read-noise only	$SNR \equiv \frac{1}{\mathbf{s}_{V^2}} \propto N^2$

NB: when photon-starved, or read noise limited, SNR $\neq \sqrt{N}$ With 2nd or higher-order estimators like for V^2 , can get SNR dependencies steeper than N¹

In general
$$
SNR = \frac{1}{S_{V^2}} \propto \left(\frac{N^4}{N^2 + aN^3V^2 + bs_{cds_read_noise}^4}\right)^{1/2}
$$

Signal-to-Noise Ratio

Coherent vs. Incoherent Averaging

Incoherent averaging (sum the magnitude squared of the fringe phasor)

- Averaging V^2 (strictly the numerator term) doesn't require phase stability between samples
	- Can combine many independent estimates of V^2
	- At PTI, 5 spectral channels over 125 sec at 50-100 samples/sec are combined to produce a synthetic white-light V^2 estimate
		- » Increases final SNR by ~200
		- » Scatter on 25 sec points allow estimation of internal errors
	- SNR increases as √ #samples

Coherent vs. Incoherent Averaging

Coherent averaging (coadding: sum the visibility phasor NVei[®])

- Use a phase reference to measure the phasor rotation
- $-$ Derotate the fringe phasor (NVe^{j $\phi \times e^{-j\phi ref}$)}
- Sum the fringe quadratures $X + jY$
- Compared to incoherent average
	- No advantage when samples are shot noise limited (SNR $\propto \sqrt{N}$)
		- » Actually, some disadvantage due to extra biases
	- Advantage occurs when samples are photon starved

» SNR gains faster than √ #samples

- Can also be used to increase fringe SNR to get an estimator into a linear regime
	- E.g., increase SNR to compute the arctan phase estimate
- Using a phase estimate to rotate phasors to a common angle so they can be coherently averaged is *phase-referencing*, a powerful technique for increasing sensitivity

Signal-to-Noise Ratio with Averaging and Coadding

Estimating Detection Bias Terms, I

- Most detectors have imperfections which must be accommodated to get good measurement accuracy
- Offsets B_2

 $N = N_{raw} - B_{N}$ (from dark sky)

This bias is just dark current + background

$$
X = Xraw - BX \t\t (from dark sky)Y = Yraw - BY \t\t (from dark sky)
$$

With a perfectly linear detector, these biases are zero

Estimating Detection Bias Terms, II

Numerator biases

NUM ∝ <X² + Y² - *bias*>

Photon noise

Other Biases

• Atmospheric biases

- Spatial
$$
\langle V^2 \rangle \approx \exp(-2\mathbf{s}^2) = \exp\left(-2.06\left(\frac{d}{r_0}\right)^{5/3}\right)
$$

– Spatial *(slow guiding)*

» Single mode fibers can eliminate most of this

- Temporal
$$
\langle V^2 \rangle \approx \exp\left(-\left(\frac{T}{T_{0,2}}\right)^{5/3}\right)
$$

» Some post-processing calibration possible

- **Instrumental**
	- Mismatched stroke vs. wavelength
- Longitudinal coherence
	- Off peak of fringe envelope
		- » Narrow spectral channels for science help

NB: The issue is not the visibility reduction, but its variability

Fringe Tracking

- What: following the interference phase phase tracking to stay on the central fringe to maintain coherence
	- Typically follow to ~radian
	- Maintains high duty cycle; necessary for cophasing
- [There's also envelope tracking, which maintains centration on the fringe envelope, not discussed here]
- **Issues**
	- Phase measurement already discussed
	- Sampling time
	- Phase unwrapping
	- Fringe centering
	- Atmospheric residuals

Coherence Time and Sample Spacing

- Many different definitions
	- $-$ T_{0.2} integration time during which phase fluctuations are 1 rad rms
	- $-\tau_{0,2}$ sample spacing for which phase difference = 1 rad rms $\tau_{0,2} \cong \frac{1}{4} T_{0,2}$
- Integration time T < $T_{0,2}$ to maintain coherence (high V²)
	- rms phase fluctuations during interval = (T/ T_{0,2})^{5/6}
- Sample spacing $t < \tau_{0,2}$ for phase continuity
	- Usually t=T, and this requirement dominates

Phase Continuity

- Phase being measured is typically $\gg 2\pi$ rads
	- But arctan phase estimator $-\pi < \phi < +\pi$
- Phase unwrapping
	- Simple

 $\Phi_i = 2\pi M_i + \Phi_i$

» Chose M_i for each sample s.t. $|\Phi_i - \Phi_{i-1}| < \pi$

– Better

- » Chose M_i for each sample s.t. $|\Phi_i \Phi_{i+1}| < \pi$
	- Estimate with low pass filter or Kalman filter, matched to sample spacing, atmospheric parameters, etc.
- Sliding window can be used to improve continuity

Tracking Performance

• Typical tracker

» Closed loop bandwidth $f_c \approx a/(2\pi)$ for $f_c \ll 1/t$

- $\,$ rms tracking error \approx (f $_{\rm c}$ /f $_{\rm G,2}$) $^{5/6}$
	- where $f_{G,2}$ is the two-aperture Greenwood frequency $\sim 1/T_{0.2}$
- Example
	- $-$ T_{0.2} = 50 ms $\tau_{0,2}$ = 13 ms $- f_{G,2} = 11 Hz$

- $T = t = 10$ ms
- $-$ f_c = 5 Hz (1/20th sample rate)
- 7/8/2003 Fringe tracking etc. 22 $-$ tracking error $= 1.9$ rads

Required Bandwidth

- In standard servo design, you want to optimize parameters to minimize the tracking error
- For the interferometer, you can accurately measure the tracking error
	- Often, you need a small enough tracking error to stay well centered on the fringe
	- You can still co-phase even if the tracking error > 1 rad if you can feedforward to a separate delay line for the secondary channel

Central Fringe ID

- Want to stay on the central fringe
	- Highest contrast best SNR
	- $V²$ for science also refers to central fringe

(Typically, also use spectrometer channels with their longer coherence lengths to reduce sensitivity to tracking errors)

- How?
	- $-$ 1) Measure dependence of $\sqrt{2}$ on phase, and move in direction of higher V²
	- Issues
		- » V² estimator typically noisier than phase estimator
		- » Need "wobble" -- natural or induced -- to resolve direction to move

Group Delay Estimation

White-light fringe \equiv interference peak \equiv phases of all colors match up

E field as function
of group delay **x**
$$
E = A \exp(jkx), k = \frac{2p}{l}
$$

 $x = \frac{\partial \Phi}{\partial k}$

- Group delay estimate \hat{x} gives absolute fringe position without unwrapping errors
- Why not use all the time?
	- In the infrared, SNR for group delay worse than for phase
		- » More read noise from reading additional channels
		- » Incoherent group-delay estimator includes a noise term proportional to fringe envelope width $\lambda^2/\Delta\lambda$

Group Delay Estimation, cont.

- Usual approach to group delay in the IR
	- » Use white-light phase tracking for high bandwidth control
	- » Use group-delay centering at a lower bandwidth
- Different in the visible (ex: NPOI)
	- » When photon count, no penalty to dispersing
	- » Wide optical bandwidth reduces GD noise
		- Allows use of a coherent delay estimator which has same SNR as WL phase estimator for moderate SNRs
- Other issues
	- » Atmospheric dispersion will introduce differences between the WL phase and the group delay

Conclusion

- You typically measure visibility phase and visibility amplitude by converting a spatial fringe pattern to a temporal one
	- Becomes a matched-filter problem
- You can derive SNR expressions: not everything goes at **Ö**N
	- Leads to differences between incoherent and coherent averaging
- Calibration is critical
	- Stability of biases is what frequently limits data accuracy
- Fringe tracking is implemented using the measured fringe phase

The End

IDI

Fringe derotation and stacking (coadding)

Incoherent HL V^2 Time Trace -- 99222.sum

_JPL

_JPL

Coherent Spec V^2 Time Trace -- 99222.sum

UT (hrs)

_JPL

JPl Requirements on Fringe Stabilization

Vibrations blur out the fringe - reduce fringe visibility

 $7/8/2003$ Freed real-unne control of the detailed tracking equal to 39 **Need real-time control of pathlength to** *~10 nm (l/50) for high fringe visibility*