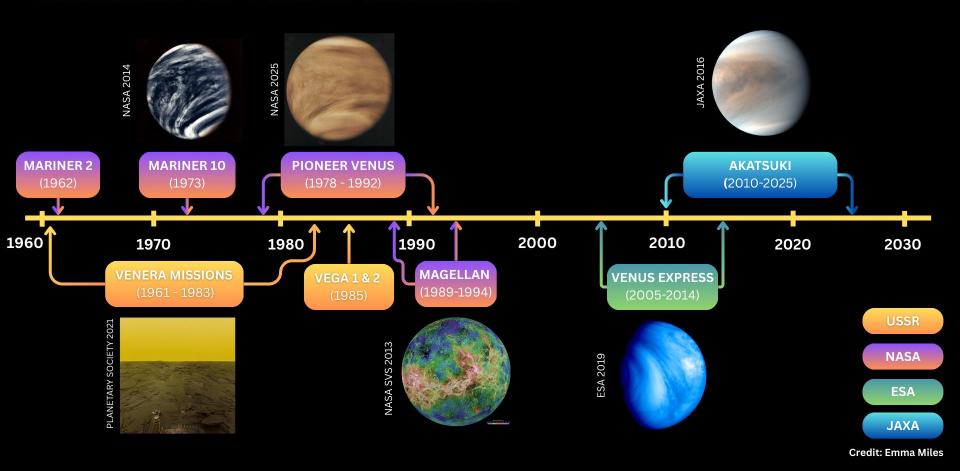
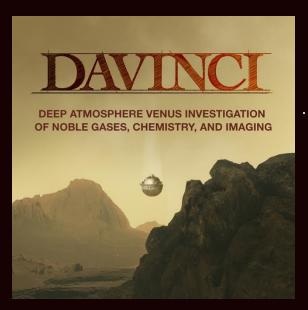
Upscaling Venus:

The Climate, Atmosphere and Observing Implications of a Super-Venus Exoplanet



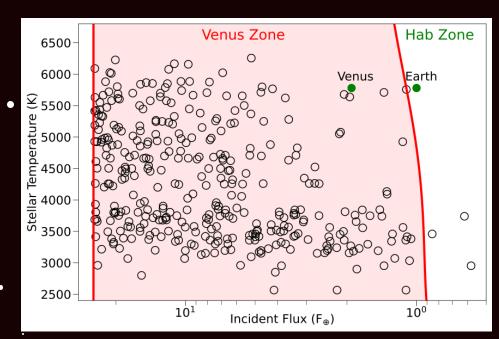
Emma Miles | PhD Candidate

P.I: Stephen Kane


Earth & Planetary Science | UCR

Timeline of Venus Missions

Preparing for Upcoming Missions to Venus



Check out Stephen Kane's poster on DAVINCI

Venus as an Exoplanet

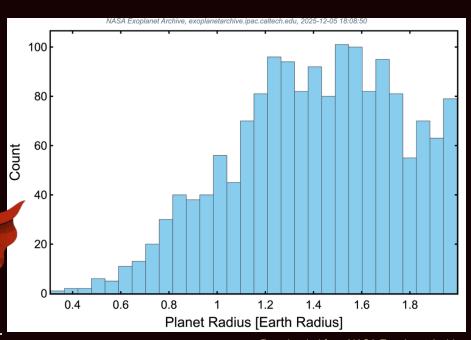
- 6000+ exoplanets have been discovered.
- 370 are within the <u>Venus</u>
 <u>Zone</u> (VZ) of their host star [4].

Potential exo-Venus canditates can be identified within the VZ.

Large population of exoplanets within VZ.

Gain context to understand past and present Venus.

Why study Exo-Venus candidates?


Study Venus as an exoplanet.

Push boundaries of climate, atmospheric and photochemical **models.**

Super Venus population

- ~40% of the VZ population have a radius between 1 and 1.5R⊕.
- A large percentage of VZ planets would be considered super-Venus [2].

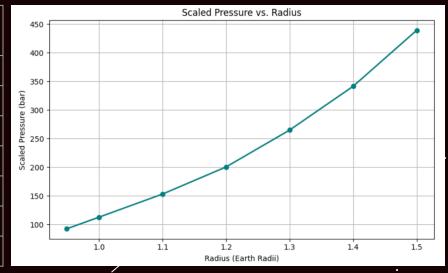
Why study Super-Venus?

Downloaded from NASA Exoplanet Archive

Research Questions

How do Venus-like atmospheres and surface conditions change in the high mass-radius regime?

What are the observable signatures of a super-Venus atmosphere?

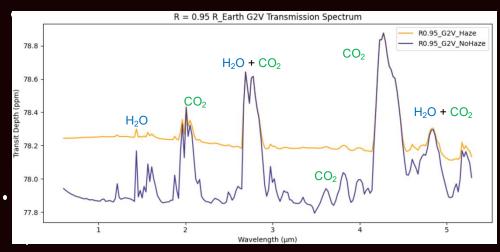


How do you upscale Venus into a super-Venus?

- 1. Begin with radius criteria (R = $1 1.5R_{\oplus}$)
- 2. Increase mass with radius.
- 3. <u>Scale</u> Venus' atmospheric mass and surface pressure to high mass-radius values.

D	$g_P\left(\frac{M_P}{M_V}\right)m_{V,atm}$
$P_{scaled} =$	A_{surf}

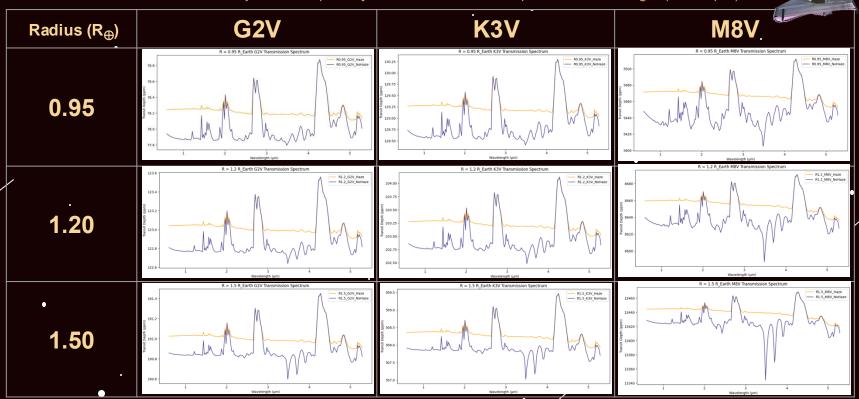
Radius (R⊕)	Mass (M⊕)	Scaled Surface Pressure (bar)	
0.95	0.80	92.39	
1.00	1.00	112.82	
1.10	1.41	153.19	
1.20	1.92	200.57	
1.30	2.59	264.98	
1.40	3.41	341.49	
1.50	4.44	439.32	



Model super-Venus spectra using PSG

As first order estimate of potential observables of super-Venus:

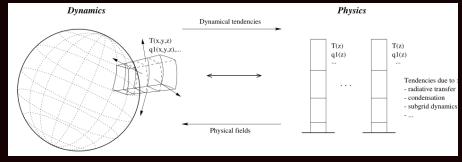
- Model transmission spectra of super-Venus cases in Planetary Spectrum Generator (PSG) [5].
- Venus-like atmosphere (with & without H₂SO₄ haze) in high mass-radius regime orbiting in the VZ of different star types.


Star Type	Star T _{eff} (K)	Star Radius (R _⊙)	Planet Orbital Distance (AU)
G2V	5777	1.000	0.7200
K3V	4699	0.778	0.3600
M8V	2566	0.119	0.0166

Transmission Spectrum – primary transit observed at ~15pc in NIR wavelength (0.6 − 5μm).

Upscale present Venus in Generic-PCM into a super-Venus.

Transmission Spectrum − primary transit observed at ~15pc in NIR wavelength (0.6 – 5µm).

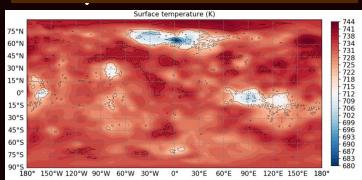

Next step

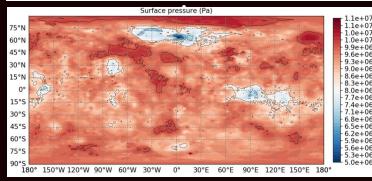
Use mass and surface pressure estimates to alter initial conditions to upscale Venus into super-Venus regime in Generic-PCM.

What is the Generic Planetary Climate Model?

Generic-PCM is a 3D General Circulation Model (GCM) used to simulate climate & atmospheric dynamics of terrestrial planets & exoplanets [1].

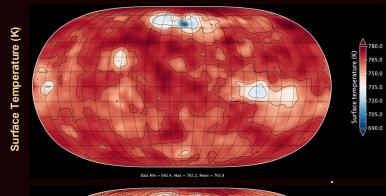
- Computes:
 - Radiative transfer
 - Atmospheric chemistry
 - Cloud microphysics
 - Surface conditions & interactions
- Can be applied to broad range of:
 - Pressures
 - Temperatures
 - Atmospheric compositions
 - Stellar parameters

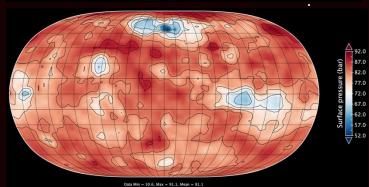



Source: LMDWiki

Generic-PCM allows researchers to explore climate regimes far beyond Earth's.

Base model of present Venus in Generic-PCM


Venus-PCM outputs



Plots from Venus Climate Database [3]

Generic-PCM outputs

Main takeaways

- o Significant questions about Venus still need to be addressed.
- venus & exo-Venus are closely linked:
 - Understanding Venus helps interpret the atmospheres and climates of exo-Venus candidates.
 - Exo-Venus observations can provide understanding of Venus conditions within a broader population of terrestrial worlds.
- Super-Venus candidates make up substantial portion of VZ planets.
 - Studying this archetype will push the limits & enhance our models.
 - Improve our understanding of extreme atmospheric and surface conditions on terrestrial planets.

This research will prepare future observations with **JWST**, **HWO**, and the **upcoming Venus missions**.

References

- 1. Bhatnagar et al. 2025 EGUSphere 3423 4 (preprint).
- 2. Kane et al 2013 ApJL **770** L20.
- 3. Martinez et al. 2023 Icarus 389 115271.
- 4. Ostberg et al 2023 AJ **165** 168.
- 5. Villanueva et al. 2018 JQSRT 217 86.