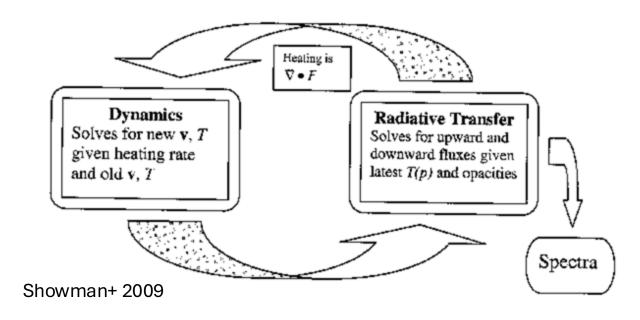
Accelerating Radiative Transfer for by Orders of Magnitude with a Machine Learning Model

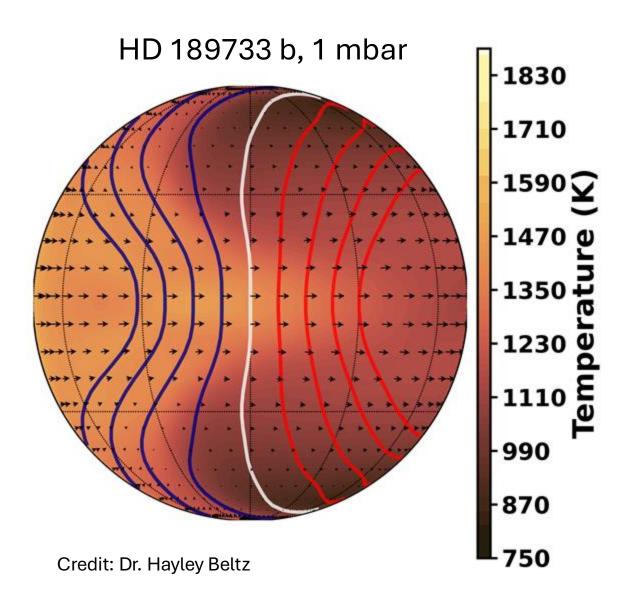
Isaac Malsky
NASA Jet Propulsion Laboratory,
California Institute of Technology
NASA Postdoctoral Program
NPP Mentor: Tiffany Kataria

Collaborators: Tiffany Kataria (NASA JPL) Natasha Batalha (NASA AMES) Matthew Graham (Caltech)

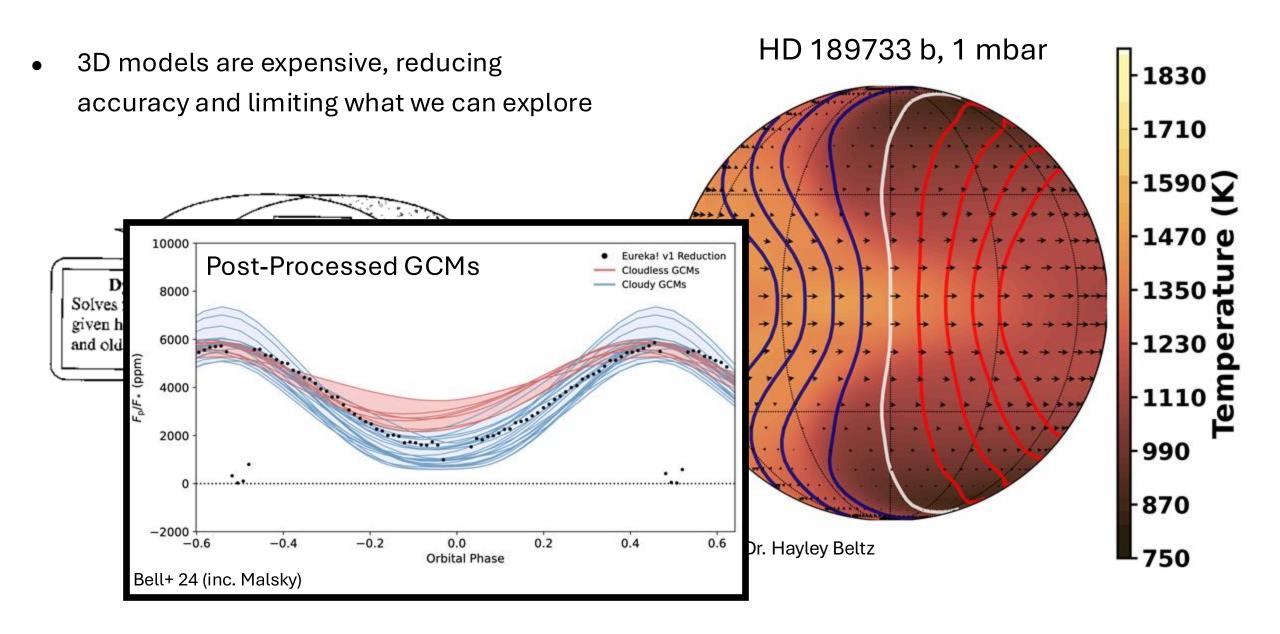
The need for speed: current RT dominates model runtimes

 3D models are expensive, reducing accuracy and limiting what we can explore



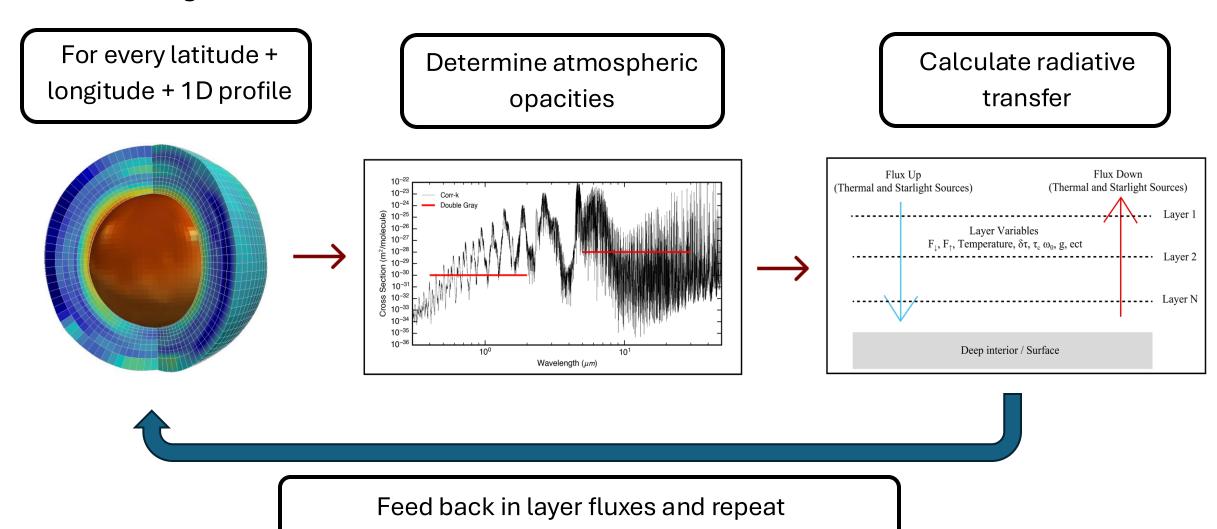


The need for speed: current RT dominates model runtimes

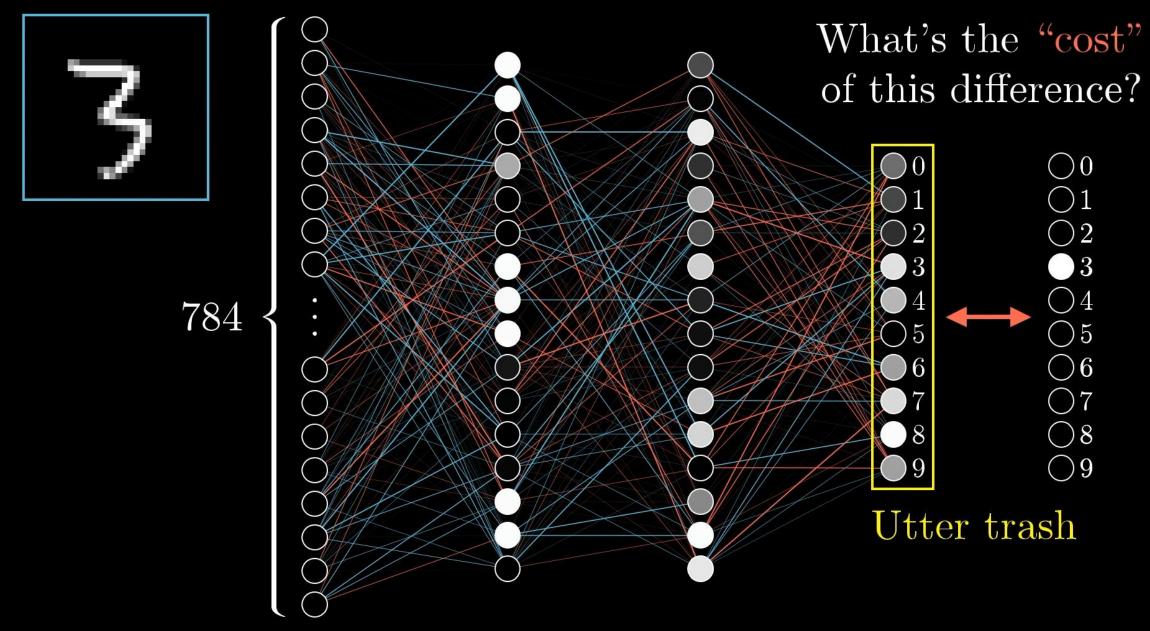


The need for speed: current RT dominates model runtimes

 Accurate solutions are known (and easy to generate), but extremely computationally demanding



Machine learning methods are being applied in astronomy

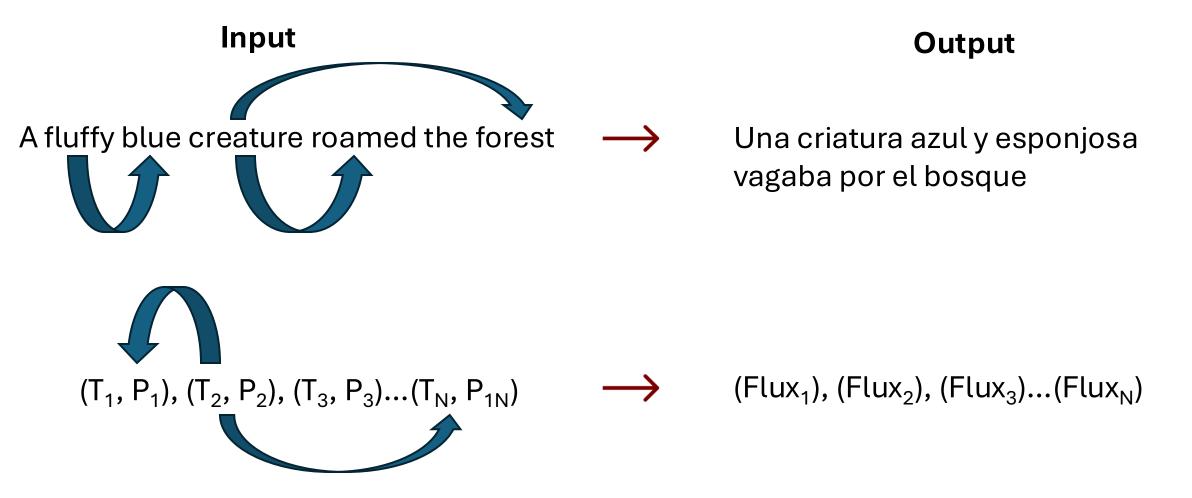


Language translation = radiative transfer (kind of)

- Goal: Determine from sequence A, the corresponding sequence B
- Need to capture the interdependencies of the sequence(s)

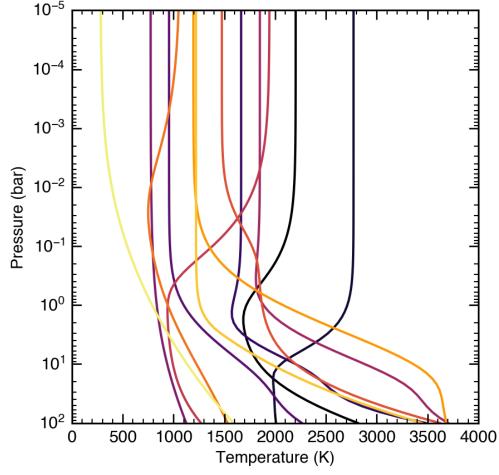
Language translation = radiative transfer (kind of)

- Goal: Determine from sequence A, the corresponding sequence B
- Need to capture the interdependencies of the sequence(s)



We need a training dataset that covers the given parameter space

- Randomly generate ~2 million parameterized 1D profiles
- Simple (no zenith angle, single star type, etc) but flexible framework

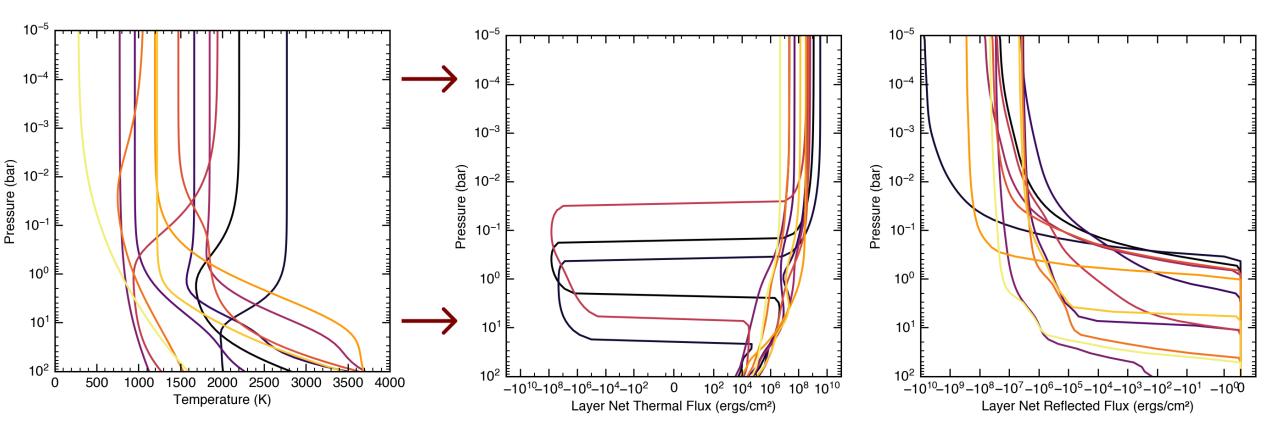


Uniform Distribution						
Parameter	min	max	Unit			
κ_{IR} pressure power-law exponent	-0.5	1	_			
$\log_{10}(\kappa_{ m IR})$	-2.5	2.5	$\mathrm{m}^2\mathrm{kg}^{-1}$			
$\log_{10}(\gamma_1)$	-2	2	_			
$\log_{10}(\gamma_2)$	-2	2	_			
α	0.0	1.0	_			
Temperature shift	-600	600	K			
Normal Distribution						
Parameter	μ	σ	\mathbf{Unit}			
$T_{ m int}$	300	700	K			
$T_{ m irr}$	1800	500	K			
Orbital separation modifier	1.0	0.5	_			
Other / fixed						
Pressure range (bounds)	10^{-5}	10^{2}	bar			
Convective adjustment	On: 1/3	Off: 2/3				

Malsky+ (submitted)

We need a training dataset that covers the given parameter space

- Take the 1D profiles and process them with PICASO to get net layer fluxes
- The many wavelength bin calculations would be too expensive in a GCM



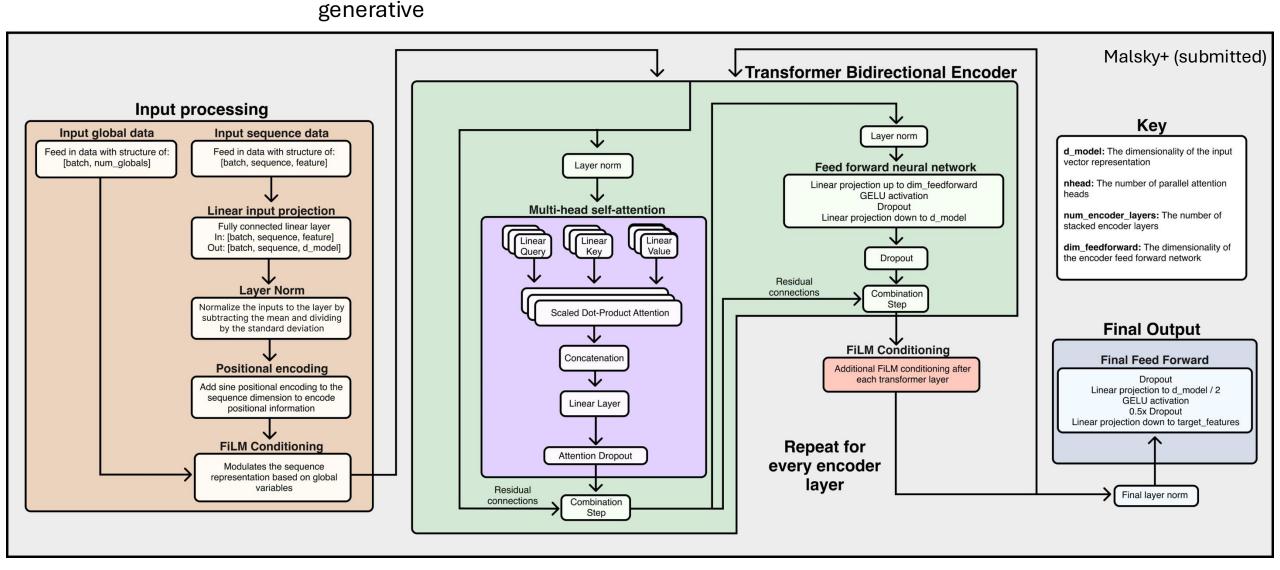
Malsky+ (submitted)

A bidirectional encoder-only transformer proved to be the best model

No time masking

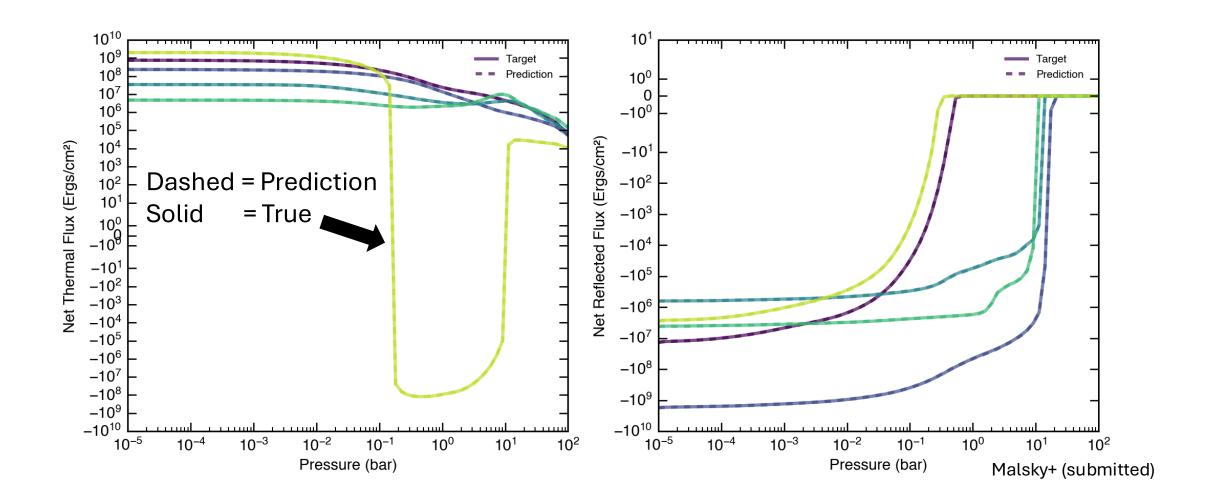
Creates representations, not

Uses attention mechanisms



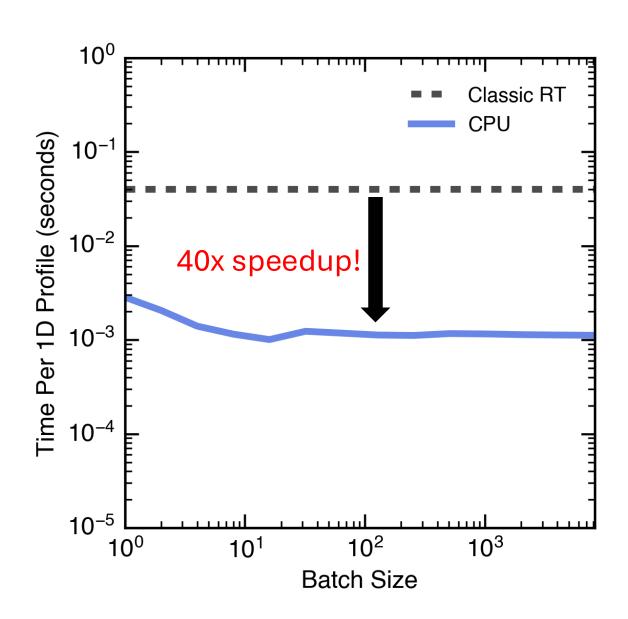
The model reproduces PICASO radiative transfer

 The model is accurate to within about 1% (compared to PICASO) for both thermal and scattered starlight fluxes



Fast, accurate radiative transfer

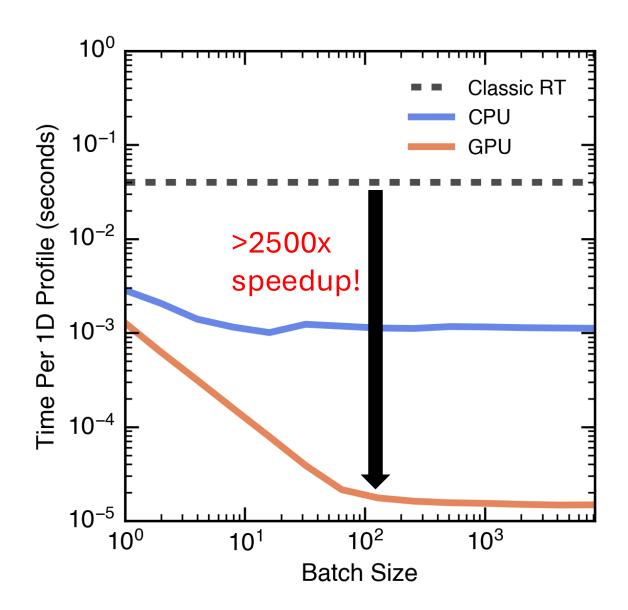
 When run on a CPU, the model is quite fast



Fast, accurate radiative transfer

• When run on a CPU, the model is quite fast

 On a GPU, the model is very fast



Using the model

• The model is publicly available on github

https://github.com/imalsky/Problemulator

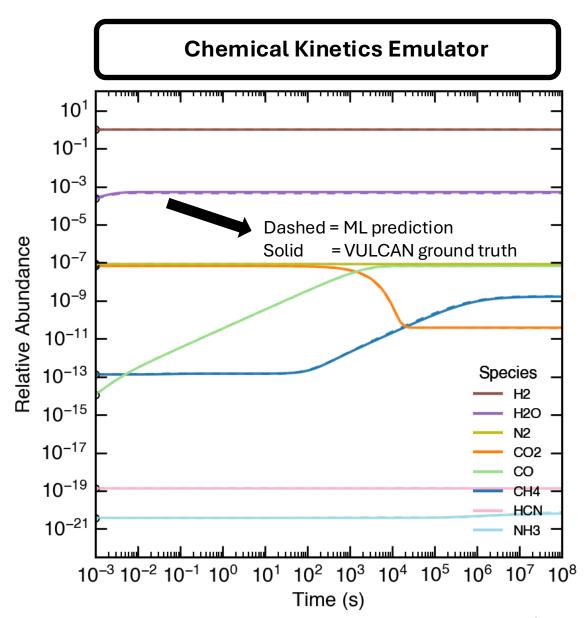
- Several projects implementing this framework have started
 - Kevin Shao/Cheng Li are working on a DISORT/Uranus model
 - John Allen is working on a SPARC/MITgcm implementation
- Retraining and inference are designed to be as simple as possible

A broader application of ML emulation of physical processes

In many ways, physical processes are the perfect domain for ML:

- 1. The desired solutions are known
- 2. Easy to generate training data
- 3. Easy to verify the solution
- 4. Original solutions are computationally expensive

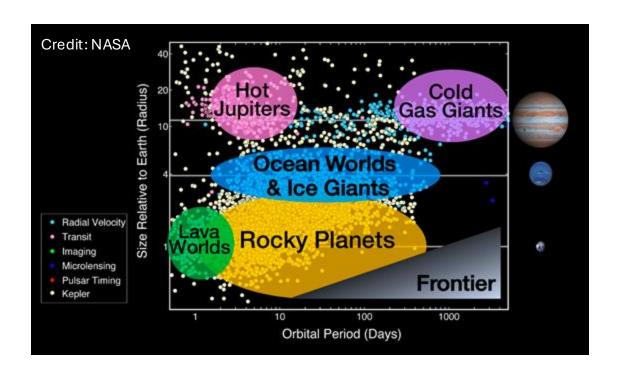
 Replace chemical kinetics with an ML emulator?

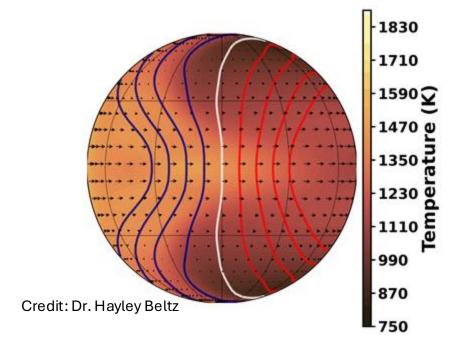


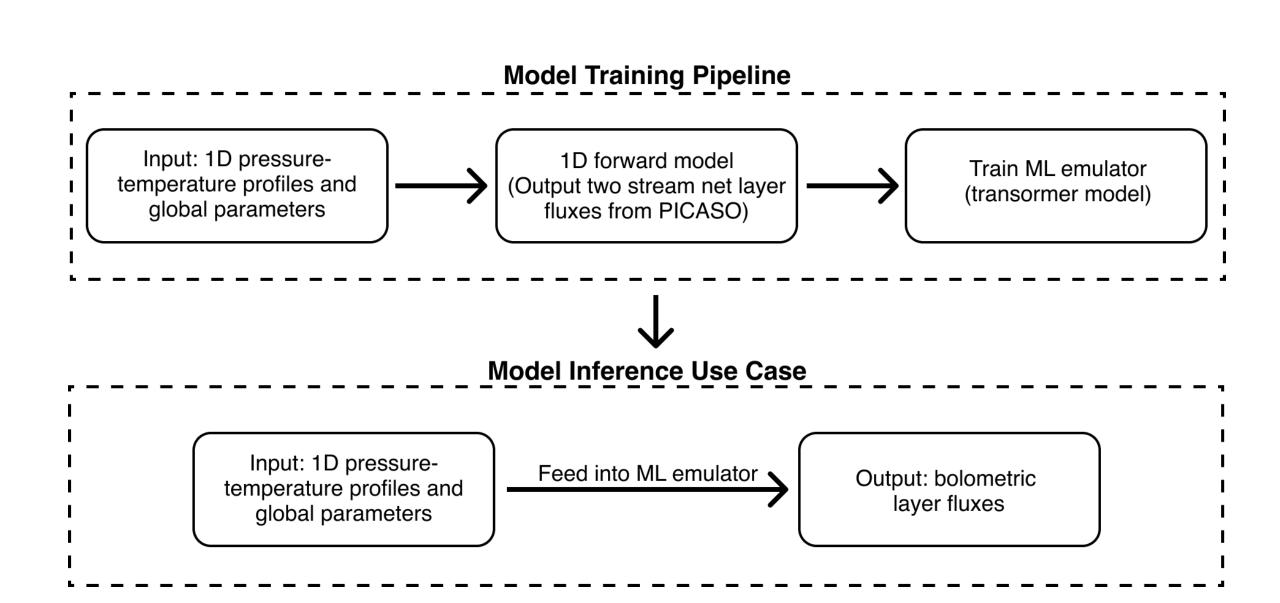
Malsky+ (in prep)

Summary and next steps

- Fast accurate RT, easy to implement in GCMs/retrievals
- There are broader applications for ML emulators, for carefully chosen problems
- Enable more accurate simulations, broader grids, new physical processes in models







How to make a ML radiative transfer emulator

