Multiplanet Systems as Laboratories for Planet Formation

Lauren Weiss Parrent Fellow IfA, University of Hawaii- Treasure Island © 2018. The American Astronomical Society. All rights reserved.

The California-Kepler Survey. V. Peas in a Pod: Planets in a Kepler Multi-planet System Are Similar in Size and Regularly Spaced*

California-Kepler Survey (CKS) Keck/HIRES Spectra of 1305 Kepler Planet-hosting Stars

- •F,G,K type stars
- •R = 60,000; SNR = 45/pixel
- •Precision stellar properties: Teff, log(g), [Fe/H], vsini, mass, radius $\sigma(R_{\star})/R_{\star} \approx 10\%$

Multi-planet Systems in the California Kepler Survey:

909 transiting planets around 355 stars

CKS VI: Which Factors Correlate with the Number of Observed Planets?

Weiss+18b

Kepler Multis vs. Singles

"Multi" = system with multiple observed, transiting planets

"Single" = system with only one observed, transiting planet

Host star masses, metallicities, and vsini are indistinguishable for singles vs. multis.

Which Factors Correlate with the Number of Observed Planets?

Weiss+18b

Overview of Planets in Multis vs. Singles

Weiss+18b

Overview of Planets in Multis vs. Singles

Weiss+18b

The radii of cool (P > 3 days) sub-Neptunes are indistinguishable for singles vs. multis

There is an excess of singles with P < 3 days (p=0.001)

What Factors Correlate with the Number of Observed Planets?

CKS VI. Kepler Multis and Singles have Similar Planet and Stellar Properties Indicating a Common Origin

> Weiss+18b arxiv.org/abs/1808.03010

"Multi" = system with multiple observed, transiting planets

"Single" = likely a former multi in which the planets have been scattered to high mutual inclinations

Other supporting evidence from Xie+16, Van Eylen+18, Dai+18

Five Patterns to Reproduce in Population Synthesis:

- 1. Planets in the same system have similar sizes
- 2. Planets in the same system have regular orbital spacing
- 3. Underlying relation between period ratio and planet sizes
- 4. Singles and multis have indistinguishable stellar properties
- 5. Planet sizes in singles and multis have similar radius distributions with a gap at 1.8 Earth radii

Multiplanet systems: Tharrr be treasure!

Weiss+18a,b

Bonus content

What are some fundamental properties in multis?

Do you see any patterns?

- 1 R_{\oplus}
- $3 R_{\oplus}$
- $\bullet \quad 10 \ R_{\oplus}$

Do you see any patterns?

Planets in the same system often have similar sizes

- $3 R_{\oplus}$
 - 10 R_{\oplus}

CKS V. "Peas in a Pod" Weiss et al. (2018)

Test Null Hypothesis with Bootstrap Trials

Observed system:

Possible bootstrap system:

Star, number of planets, orbital periods are preserved Planet size is drawn at random Only detectable planets are counted

One example bootstrap trial: no correlation between planet sizes

The sizes of pairs of planets in the same system are correlated.

1000 bootstrap trials: the planet size correlation is not reproduced with a null hypothesis + detection biases

Do you see any patterns?

Planets in the same system have regular spacing

The orbital period ratios of planets in the same system are correlated (165 pairs)

Do you see any patterns?

Is there a connection between planet size and spacing?

The spacing and size of a pair of planets are correlated

Weiss+18

Planet formation theories were written to describe the solar system.

IN THE T

Giant Impacts

tath mats

Mercury Jenus

needed to make big terrestrial planets *in situ*

Saturn

Neptune

Uranus

Giant impacts diversify planet sizes.

Clues from oligarchic growth

Lissauer & Stewart (1993):

The self-limiting nature of runaway growth strongly implies that massive protoplanets form at regular intervals in semimajor axis.

Kokuba & Ida (1998):

We have shown the oligarchic growth of protoplanets in the post-runaway stage. Protoplanets with the same order masses with the orbital separation larger than about $5r_{\rm H}$ is the inevitable outcome of planetary accretion in the post-

