Towards measuring temporal trends in exoplanet properties and occurrence

in collaboration with Eric Mamajek, Lynne Hillenbrand, Erik Petigura, Ed Gillen, Ian Crossfield, Andrew Howard, Howard Isaacson, et al.

Trevor David JPL-ESI Postdoc

TESS:

Origins of close-in planets

the hot Jupiter paradigm: three possible channels

if all hJs form through tidal migration, **then** a dearth of hJs around young stars is expected **if** all hJs form *in situ* or via disk migration, **then** hJ occurrence should be flat with time

> hot Neptunes share some similar characteristics to hJs i.e. tendency to be single and preference for metal-rich stars (Dong et al. 2018, Petigura et al. 2018)

How does one investigate exoplanet properties across time?

Coeval stellar populations are diverse

star-forming regions and OB associations

young (<107 yr), few nearby, somewhat populous (103), found near galactic plane, solar metallicity, unbound

young moving groups young (107-108 yr), nearby (tens of pcs), sparsely distributed on the sky (dozens of members), unbound

open clusters

intermediate age (108-109 yr), somewhat populous (103-104) some nearby, approximately solar metallicity, loosely bound

A brief history of cluster planet searches: hot Jupiters

A brief history of cluster planet searches: small planets

Meibom et al. (2013) Frequency of sub-Neptunes in a 1 Gyr old cluster is **the same** as the field (2 planets for 377 stars surveyed)

now, with *K2*, we can study occurrence in nearer and younger clusters Hyades/Praesepe (~600-800 Myr), Pleiades (125 Myr), Upper Sco (5-10 Myr)

Stages of planet formation observed by K2

planet occurrence as a function of time can directly measure planet migration / evolution timescales

K2-33 b: extremely young and unusually large

K2 David, Hillenbrand, Petigura et al. (2016) (see also Mann et al. 2016)

Benneke, David, Petigura et al. (*in prep.*)

star: a low-mass member of the ~7 Myr old Upper Scorpius OB association

planet: period of 5.4 d, size of ~5 Earth radii (implying a substantial volatile envelope), orbiting just *inside* present-day co-rotation radius

> **disk:** tenuous dust disk with inner edge at 2 AU

Image credit: Robert Hurt, *Spitzer* NASA/JPL-Caltech

Planet occurrence in a transit survey

1) stellar radii for young stars are more uncertain

2) number of stars is limited by the cluster mass (and those of which show unocculted photospheres)

3) completeness maps can vary substantially from star-to-star

Variability of young stars

Effects of stellar activity on transit searches

survey completeness is a function of brightness, rotation period, activity amplitude (all of which have some mass dependence)

*very preliminary

Completeness for young low-mass stars

Completeness for young low-mass stars

200 injections per star, 564 M-type stars, recovery = $SNR > 7.5$ (c.f. K2-33, SNR = 11.3) *very preliminary

What do occurrence rates tell you if radius and age are correlated?

1) perhaps we were lucky and caught a sub-Saturn shortly after its formation (e.g. a GJ 436 progenitor)

- 2) perhaps K2-33 b will experience significant radial contraction, and is a sub-Neptune progenitor
- 3) in any event, there *does not* appear to be a large population of $~10 \text{ R}_\oplus$ planets

measuring the mass will require infrared PRVs, where stellar jitter is lower: PARVI @ Palomar in 2019

Photo-evaporation and the evolution of small planets

Evidence for radius inflation at young ages?

Evidence for radius inflation at young ages?

960 *Kepler* planet hosts, youth determined from lithium abundance Berger, Howard, and Boesgaard (2018)

The radii of young stars

The mass-radius relation of young stars

a key ingredient in exoplanet occurrence rates are *stellar radii*

how are the radii of stars measured?

interferometry only the nearest, largest stars

SED fitting model-dependent, prone to reddening

asteroseismology

model-dependent, only certain regions of HR diagram

spectroscopically double-lined eclipsing binaries: depends essentially on geometry and Kepler's 3rd law

Eclipsing spectroscopic binaries

fundamental masses & radii with precision of a few percent

Very few pre-main-sequence stars have well-determined radii

Trevor David ExSoCal / 17 Sep 2018

Very few pre-main-sequence stars have well-determined radii

Pre-main sequence evolutionary models

…set the timescale for disk dispersal / giant planet formation …determine the masses of directly imaged brown dwarfs and giant planets

The Upper Sco HR diagram / CAMD

Herczeg & Hillenbrand (2015)

Damiani et al. 2018

individual stars exhibit ages between 1-10 Myr

distance spread, differential reddening, disk-related photometric variability, unresolved binaries, specific accretion histories, different spin/magnetic field strengths, genuine age spread…

Nine eclipsing binaries in Upper Sco

From observables to fundamental parameters

K2 photometry + Keck/HIRES RVs: masses and radii to $<$ 3 %

broadband photometry + *Gaia* parallaxes + radii + log(g) + model atmospheres: Teff to $<$ 3%, logL to \sim 0.05 dex

A ~7 Myr age in the context of Sco-Cen

Mean stellar density of K2-33

1) Transiting planets are astrophysical tools, useful for studying pre-MS stars 2) Mean stellar density is a viable way for identifying young hosts, investigating temporal trends in planet properties, particularly for very low-mass stars

MRD vs. HRD, and trends with mass/Teff

- 1) Many widely-used evolution models unable to reproduce M-R relation with a single-age
- 2) Nevertheless, the MRD exhibits less of a spread than the HRD
- 3) Most models indicate an age of 5-7 Myr, magnetic models suggest 9-10 Myr

Masses from pre-MS models

> this has implications for RV searches for planets around young stars

RIK 72 b: a likely transiting brown dwarf at \sim 7 Myr

Looking forward

• **Planet occurrence across time**

- Possible now with *K2*
- *TESS* may offer better statistics, will fill in interesting age range with moving groups, but crowding may be a problem for some clusters
- *Gaia* will provide a relatively unbiased view (activity affects astrometry negligibly)
- **Are young planets less dense?**
	- Precision infrared Doppler spectroscopy is needed to mitigate impact of activity
- **Is atmospheric escape more severe at early times? Can we directly constrain photo-evaporation timescales?**
	- *HST* or *JWST* survey of similarly-sized planets around stars of different ages
- **What are the temperatures and eccentricities of young transiting exoplanets?**
	- *JWST* secondary eclipse observations + RV
- **What are the primordial spin-orbit alignments of young transiting exoplanets?**
	- Doppler tomography with a ~10m-class telescope

© 2018 California Institute of Technology. Government sponsorship acknowledged.

How well do evolution models predict the radii of young stars?

Young exoplanets from the K2 mission

Three small planets transiting a bright young field star

The power of gyrochronology

period-color-age relations

Barnes (2007), Barnes et al. (2010), Mamajek & Hillenbrand (2008), Angus et al. (2015)

K2-233 d: a tractable target for James Webb

transit depth variations could be detected in K2-233 d with a single *JWST* visit

An adolescent sub-Neptune in the Cas-Tau association

Gyrochronology ages

Periods from Rebull et al. (2016,2017) **Solid**: Barnes (2007) **Dashed**: Mamajek & Hillenbrand (2008) **Dot-dashed**: Angus et al. (2015)

 $\tau = 124 \pm 15$ Myr (Barnes 2007) $\tau = 262 \pm 40$ Myr (Mamajek & Hillenbrand 2008) *Note: gyrochronology not applicable on pre-MS

Stellar activity

Chromospheric emission in the UV is correlated with age

Shkolnik et al. 2011 Rodriguez et al. 2011 Findeisen & Hillenbrand 2011

$$
\tau = 110 (+160, -65) \text{ Myr}
$$

Spectroscopic age indicators

- Strong Ca II H&K emission
- Some Balmer line emission
- Ha in absorption, wings in emission
- No lithium

Spectroscopic characteristics are consistent with ~Pleiades age

Slower rotators show less lithium (Bouvier et al. 2017)

Age of EPIC 247267267

- Independent methods agree on a range of 50-500 Myr at 68% confidence.
- Caveats: gyrochronology not applicable if star is pre-MS and, along with activity relations, these are statistical age indicators
- Kinematics point to younger end of this age range (50-90 Myr)

The Cas-Tau association

de Zeeuw et al. (1999)

1921 Rasmuson notes stream of BA stars co-moving with α Per, far from cluster core

1956 Blaauw suggests a new association, "Cas-Tau," from kinematics of 49 B stars

1958 Petrie challenges on basis of RV scatter

1963 Crawford challenges due to scatter in CMD

1999 de Zeeuw et al. conclude from *HIPPARCOS* data Cas-Tau is a *bona fide* association, though keeping only 1/3 of Blaauw's original members

covers ~15% of the sky

A new turnoff age for Cas-Tau

de Zeeuw et al. (1999) suggested 83 members Color-magnitude diagram constructed from *UBV* photometry (Mermilliod 2006) and *Hipparcos/Gaia DR1* parallaxes Exclude low probability (<90%) members, EBs, emission line stars **Age = 46 ± 8 Myr** (c.f. Blaauw 1956 kinematic estimate of 50-70 Myr, de Zeeuw & Brand 1985 turnoff age of 20-30 Myr)

54

