The Galactic Distribution of Planets from *Spitzer* Microlens Parallaxes

Yossi Shvartzvald

IPAC/Caltech

Spitzer microlensing team:

Andy Gould, Jennifer Yee, Sean Carey, Chas Beichman, Geoff Bryden, <u>Sebastiano Calchi Novati</u>, Scott Gaudi, Calen Henderson, Wei Zhu

Planets: mass vs. separation

Microlensing probes planets at all masses, with separations of 1-10 AU

- * data from: NASA Exoplanet Archive
- * Assuming Solar-system planets density for transit planets w/o mass measurements

Planets: mass vs. separation

Microlensing probes planets at all masses, with separations of 1-10 AU At and beyond the "snowline" of their host stars

- * data from: NASA Exoplanet Archive
- * Assuming Solar-system planets density for transit planets w/o mass measurements

Planets: mass vs. Galactic distance

Microlensing is (currently) the only technique that probes planets throughout the Galaxy

Bulge vs. disk exoplanets frequency?

- Planet formation in different environments
- Impact of high radiation on protoplanetary disks
- Frequency vs. (average) age and metallicity

* data from: NASA Exoplanet Archive

* Assuming Solar-system planets density for transit planets w/o mass measurements

Planets: mass vs. Galactic distance

Microlensing is (currently) the only technique that probes planets throughout the Galaxy

But how well do we know the distances?

- Orbital parallax only nearby systems
- Lens flux difficult
- Satellite parallax !!!

* data from: NASA Exoplanet Archive

* Assuming Solar-system planets density for transit planets w/o mass measurements

Space Microlensing Revolutionary

Spitzer microlensing campaigns

- ✓ 2014: 100 hr DDT program
- ✓ 2015: 832 hr
- ✓ 2016: 350 hr
- ✓ 2017: 350 hr
- ✓ 2018: 350 hr
- 2019: 350 hr
 2020-?

- ~700 events

Objective event selection (Yee+15)

Microlensing Parallax

Satellite parallax

- Two (or more) observers
- Shift in time and peak of magnification
- Sensitive to all microlens parallaxes

$$M = \frac{\theta_E}{\kappa \pi_E}$$
$$D_L^{-1} = \frac{\theta_E \pi_E}{AU} + D_S^{-1}$$

$$\boldsymbol{\pi}_{\boldsymbol{E}} = \frac{AU}{d_{\perp}} (\Delta \tau, \Delta u)$$

 d_{\perp} - Earth-satellite distance

Control sample

- Single lens events as comparison
- Sensitive to all distances

Disk planet sensitivity $\approx 2x$ Bulge planet sensitivity

Planet	Mass	Distance	Reference
OGLE-2014-BLG-0124	0.5 <i>M_J</i>	4.1 kpc	Udalski+ (2015)
OGLE-2015-BLG-0966	21 M_\oplus	3.1 kpc	Street+ (2016)
OGLE-2016-BLG-1067	0.4 <i>M</i> _J	3.7 kpc	Calchi Novati+ (2018a)
OGLE-2016-BLG-1190	13 <i>M</i> _J	6.7 kpc	Ryu+ (2018)
OGLE-2016-BLG-1195	1.4 M_{\oplus}	3.9 kpc	Shvartzvald+ (2017b)
OGLE-2017-BLG-1140	1.6 <i>M_J</i>	7.3 kpc	Calchi Novati+ (2018b)

...and OB170406, OB180596, OB180799, OB180932

Stay tuned...!!!