Exoplanet Science with the Keck Planet Finder (KPF*) *- formerly SHR

Andrew Howard (PI), Arpita Roy, Sam Halverson, Jerry Edelstein, Steve Gibson, Mike Raffanti, Edward Wishnow, Daniel Finstad, Yuzo Ishikawa, Jeremy McCauley, Tim Miller, Claire Poppett, Michael Rafanti, Kodi Rider, Martin Sirk, Chris Smith, Marie Weisfeiler

HEISING - SIMONS Caltech FOUNDATION W.M. KECK Berkeley M. KECK OBSERVATORY

Photo: Laurie Hatch

Keck Planet Finder (KPF)

Design:

- High-precision RV spectrometer
- Cross-dispersed échelle $R \ge 85,000$
- 2 channels: 440-590nm, 590-860nm
- Fiber-fed, highly stable Zerodur platform

Capabilities:

- High efficiency
- RVs delivered as facility data product
- Doppler precision: 0.3 m/s (goal) 0.5 m/s (req)

Status:

- Top instrument priority in WMKO strategic plan
- In preliminary design phase
- Expected first light: 2020

The Science Case for KPF

Core Exoplanet Science

- I. Broad <u>Doppler exoplanet science</u>, as with HIRES and HARPS; nearby star searches
- 2. <u>TESS</u> planet masses
- 3. <u>Kepler</u> planet masses

Additional Exoplanet Science

- I. <u>WFIRST</u> target selection
- 2. Exoplanet <u>atmosphere spectroscopy</u> at high spectral resolution
- 3. <u>Stellar characterization</u> properties and detailed elemental abundances
- 4. ...

Ancillary Astronomy

- 1. Detection of <u>expansion of universe</u> with Lyman- α forest
- 2. Galactic chemical abundance archaeology
- 3. Solar System spectroscopy planets, moons, comets, asteroids, KBOs
- 4. *Isotopic abundance* from precise line shapes
- 5. Zeeman splitting due to B-field

6. ..

Transiting Exoplanet Survey Satellite (TESS)

Field: 4 x (24° x 24°)
Survey : full sky (27 days); ecliptic poles (1 yr)
Scientific Goals: Discover planets transiting *bright* stars
Enable detailed follow-up (masses, spectroscopy)

ECLIPTIC POLE

Simulated TESS Performance

GK Dwarf Stars

Simulation Details

Detailed model - Sullivan et al. (2015) 2-yr mission with realistic photometry Planet population based on Kepler Mass-radius relationship (Weiss & Marcy 2014) 200,000 pre-selected stars → 1700 planets TTV measurements limited

Stars: GK dwarfs (T_{eff} = 4200-5900 K) Planet temperatures: all

Planet Population

Mostly super-Earths (not Earth-size) Mostly detectable with K > I m/s

Simulated TESS Performance

GK Dwarfs - V < 14 (SHREK on 10 m Keck)

Planet Population

Spectrometer Performance

GK Dwarfs

Surveys of 10s of planets with 3-4 m telescopes (HARPS, HARPS-N, WIYN, etc.)

Kepler — New Opportunities

Circumbinary Planets

'Super-puffs' (Ultra low density)

Planetary System Architectures

High-multiplicity systems (e.g. Kepler-11)

Transit Timing Variations (TTV) Systems

Determine if cool Earth-size planets are rocky.

Earth-size planets known from Kepler

Rocky

Determine if cool Earth-size planets are rocky.

Earth-size planets known from Kepler

Stellar Light Intensity (Earth-units)

Simulated Key Project:

- Measure mass function of Earth-size planets
- 50 nights
- Noise model: I m/s (jitter) + 0.5 m/s (systematic) + photon-limited
- 30 Earth-size planets (all T_{eq}) or 8 cool Earths (T_{eq} < 600 K)

Puffy?

Petigura, Howard, & Marcy (2013)

Science with KPF

Doppler Precision

Exposure calculator available — Doppler precision, SNR per order

End

Masses Needed to Interpret JWST Transit Spectra

Planet Masses Needed before JWST Observations

- Bulk mass and radius provide basic understanding of planet.
- Planet mass determines surface gravity and atmospheric properties.
- Mass needed to plan observations (SNR per transit, etc.)

Precise Masses Needed for JWST Transmission Spectroscopy

Measure Atmospheric Scale Height

Precise Masses Needed for JWST Transmission Spectroscopy

Measure Atmospheric Scale Height

Planet Mass and Atmosphere Composition Fundamentally Degenerate

Nearby Stars

Continue the Keck + Lick legacy

Search for smaller planets orbiting nearby stars

Intrinsically interesting planet population.

Provide targets for imaging missions with masses, eccentricities, system architectures.

Imaging missions/instruments include WFIRST, TMT, future NASA Flagship mission in 2030s (?)

Howard et al. (2010)

WFIRST

Graphics from J. Kasdin

Nearby planet searches are valuable to WFIRST

- Identify targets for WFIRST observations, including small planets
- Save time on WFIRST search phase
- Measure planet masses and eccentricities important to interpret spectra

WFIRST

Known Exoplanets and Characterized Spectra

Figure from J. Kasdin

WFIRST — Spectroscopy of Small Planets

Historic Keck + Lick RVs Powerfully Constrain Exoplanet Population

Results from major study of Lick + Keck RV data sets in preparation for an imaging mission:

SHREK RV Campaign Sensitivity to Super-Earths for WFIRST Imaging in 2020s

SHREK System Overview

SHREK System Overview

Spectrometer in Vacuum Chamber

Spectrometer Optical Layout

SHREK System Overview

CCD: 4k x 4k 15µm pixels 61 mm x 61 mm

Design Highlight: Optical Bench

Unique opportunity: availability of 2 m x 0.4 m Zerodur disk

Primary advantage is very low CTE: (provides stability against thermal expansion)

Bench Material	CTE [10 ⁻⁶ K ⁻¹]	Relative to Zerodur
Zerodur	0.05	1x
Invar 36	1.0	20x
Stainless 416	8.5	170x
Stainless 304	14.7	294x

Design Highlight: Optical Mounts

- Intent is to take full advantage of the low CTE of the Zerodur disk •
 - Avoid high CTE materials where possible: metals, RTV, plastics, epoxy
- Mounting scheme is to mechanically contact optics and mounts also ٠ made of Zerodur, where possible - directly to the Zerodur bench

More Design Highlights

Echelle Grating

Early purchase to secure spot in production queue

L4

30

Reformatter

Lens support is Zerodur, optically contacted to base

Early purchase to fully test and characterize

L1 L3

Extras Slides

TNG-HARPS is as fast as Keck-HIRES

Both Telescopes used 30 minute exposures. Both Telescopes achieved RV precision of 2 m/s. But the TNG has 1/8 the collecting area!

TNG-HARPS is as fast as Keck-HIRES

HARPS-N obtains a typical SNR \sim 70 while HIRES is forced to obtain SNR \sim 200 to compete. HARPS-N achieves the comparable Doppler precision as HIRES with 1/8 the photons.

Stable Spectrometers are 8x Faster than HIRES for RVs. Reason: HIRES must post-calibrate every exposure with polluting iodine.

The Challenge of Forward Modeling Iodine \otimes Stellar Spectra

Iodine Doppler Method

- Requires ~10,000 free parameters per spectrum. Only interested in one parameter — RV!
- 2. Requires high SNR spectra to model.
- 3. PSF is spatially and temporarily variable.
- 4. Intrinsically limited by ability to model PSF and wavelength solution.

Observed Doppler RMS of FGK Stars HARPS-N vs HIRES

Observed Doppler RMS of FGK stars with HIRES (line, from Howard et al. 2010) and from HARPS-N (Motabeli et al. 2015).

HARPS-N has an error floor of 0.5 m/s. HIRES has an error floor of 1.8 m/s.

Doppler Planet Measurements

Doppler Signals — Scale

$$K = \frac{3.7 \,\mathrm{m \, s^{-1}}}{(1-e^2)^{1/2}} \cdot \left(\frac{P}{5 \,\mathrm{days}}\right)^{1/3} \cdot \left(\frac{M_{\star}}{M_{\odot}}\right)^{2/3} \cdot \frac{M_{\mathrm{pl}}}{10M_{\odot}}$$

Doppler Planet Discovery

Source of Doppler Error

Photon-limited (Poisson):

- HARPS-N: 1 m/s in 30 min for V = 11 mag star (K0 dwarf)
- SHREK: I m/s in 4 min for 8X aperture and 6% throughput for same V = 11 mag star

Astrophysical Jitter:

- Acoustic oscillations ~I m/s on ~3-5 min timescale
 mitigation: observing strategy
- Granulation (surface convection) ~I m/s on ~hour timescales
 - mitigation: observing strategy
- Magnetic Activity ~0-3 m/s on ~month timescales from spots/plage, rotation
 - mitigation: activity metrics: Ca II H&K lines, FWHM/BIS of CCF

Instrumental Precision:

- Simultaneous PSF calibration iodine technique} (HIRES) limited to ~2 m/s.
- Stable reference stable spectrograph (HARPS) achieves < 0.8 m/s (probably 0.3-0.5 m.s)

Howard et al. (2010, 2011, 2014)

Orbital Phase

HARPS — Best Performance Doppler Planet Discovery — Bright Stars

Pepe et al. (2011)

HD 20794 b P = 18 d K = 0.83 \pm 0.09 m/s Msini = 2.7 \pm 0.3 M_E χ^2 / DOF = 1.4

HD 20794 c P = 40 d K = 0.56 \pm 0.10 m/s Msini = 2.4 \pm 0.4 M_E

HD 20794 d P = 90 d K = 0.85 ± 0.10 m/s Msini = 4.8 ± 0.4 M_E

JD - 2450000.0 [days]

HARPS — Best Performance Doppler Planet Discovery — Bright Stars

HD 85512 b P = 58 d K = 0.77 \pm 0.10 m/s Msini = 3.6 \pm 0.5 M_E χ^2 / DOF = 1.0

Table 2. Observations of the targets with HARPS

Target	Data points	Time span	RV scatter	$\log(R'_{\rm HK})$
		[days]	$[m s^{-1}]$	
HD 1581	93	2566	1.26	-4.93 ± 0.003
HD 10700	141	2190	0.92	-4.96 ± 0.003
HD 20794	187	2610	1.20	-4.98 ± 0.003
HD 65907A	39	2306	1.45	-4.91 ± 0.006
HD 85512	185	2745	1.05	-4.90 ± 0.043
HD 109200	77	2507	1.16	-4.95 ± 0.018
HD 128621	171	2776	NA	-4.96 ± 0.014
HD 154577	99	2289	1.05	-4.87 ± 0.026
HD 190248	86	2531	1.26	-5.09 ± 0.009
HD 192310	139	2348	2.62	-4.99 ± 0.033

HARPS vs. HIRES — Observations of the Same Star

GI 785 (HD 192310)

nearby, bright star K0V V = 5.7 mag

<u>Good test of noise sources:</u> bright \rightarrow not photon-limited test of systematic errors + jitter

<u>Planets discovered:</u> Planet b - Howard et al. (2011) Planet c - Pepe et al. (2011)

<u>RMS to 2-planet fit:</u> HIRES = 2.2 m/s HARPS = 1.0 m/s

HARPS vs. HIRES — Observations of the Same Star

RMS to 2-planet fit:		
HIRES = 2.2 m/s		
HARPS = 1.0 m/s		

GI 785 (HD 192310)

nearby, bright star K0V V = 5.7 mag

<u>Good test of noise sources:</u> not photon-limited test of systematic errors + jitter

<u>Planets discovered:</u> Planet b - Howard et al. (2011) Planet c - Pepe et al. (2011)

<u>RMS to 2-planet fit:</u> HIRES = 2.2 m/s HARPS = 1.0 m/s

Doppler Planet Measurements

Doppler Signals — Scale

$$K = \frac{3.7 \,\mathrm{m \, s^{-1}}}{(1-e^2)^{1/2}} \cdot \left(\frac{P}{5 \,\mathrm{days}}\right)^{1/3} \cdot \left(\frac{M_{\star}}{M_{\odot}}\right)^{2/3} \cdot \frac{M_{\mathrm{pl}}}{10M_{\odot}}$$

Doppler Planet Discovery

Source of Doppler Error

Photon-limited (Poisson):

- HARPS-N: 1 m/s in 30 min for V = 11 mag star (K0 dwarf)
- SHREK: I m/s in 4 min for 8X aperture and 6% throughput for same V = 11 mag star

Astrophysical Jitter:

- Acoustic oscillations ~I m/s on ~3-5 min timescale
 mitigation: observing strategy
- Granulation (surface convection) ~I m/s on ~hour timescales
 - mitigation: observing strategy
- Magnetic Activity ~0-3 m/s on ~month timescales from spots/plage, rotation
 - mitigation: activity metrics: Ca II H&K lines, FWHM/BIS of CCF

Instrumental Precision:

- Simultaneous PSF calibration iodine technique} (HIRES) limited to ~2 m/s.
- Stable reference stable spectrograph (HARPS) achieves < 0.8 m/s (probably 0.3-0.5 m.s)

Howard et al. (2010, 2011, 2014)

Orbital Phase

HARPS — Best Performance Doppler Planet Discovery — Bright Stars

Pepe et al. (2011)

HD 20794 b P = 18 d K = 0.83 \pm 0.09 m/s Msini = 2.7 \pm 0.3 M_E χ^2 / DOF = 1.4

HD 20794 c P = 40 d K = 0.56 \pm 0.10 m/s Msini = 2.4 \pm 0.4 M_E

HD 20794 d P = 90 d K = 0.85 ± 0.10 m/s Msini = 4.8 ± 0.4 M_E

JD - 2450000.0 [days]

HARPS — Best Performance Doppler Planet Discovery — Bright Stars

HD 85512 b P = 58 d K = 0.77 \pm 0.10 m/s Msini = 3.6 \pm 0.5 M_E χ^2 / DOF = 1.0

Table 2. Observations of the targets with HARPS

Target	Data points	Time span	RV scatter	$\log(R'_{\rm HK})$
		[days]	$[m s^{-1}]$	
HD 1581	93	2566	1.26	-4.93 ± 0.003
HD 10700	141	2190	0.92	-4.96 ± 0.003
HD 20794	187	2610	1.20	-4.98 ± 0.003
HD 65907A	39	2306	1.45	-4.91 ± 0.006
HD 85512	185	2745	1.05	-4.90 ± 0.043
HD 109200	77	2507	1.16	-4.95 ± 0.018
HD 128621	171	2776	NA	-4.96 ± 0.014
HD 154577	99	2289	1.05	-4.87 ± 0.026
HD 190248	86	2531	1.26	-5.09 ± 0.009
HD 192310	139	2348	2.62	-4.99 ± 0.033

HARPS vs. HIRES — Observations of the Same Star

GI 785 (HD 192310)

nearby, bright star K0V V = 5.7 mag

<u>Good test of noise sources:</u> bright \rightarrow not photon-limited test of systematic errors + jitter

<u>Planets discovered:</u> Planet b - Howard et al. (2011) Planet c - Pepe et al. (2011)

<u>RMS to 2-planet fit:</u> HIRES = 2.2 m/s HARPS = 1.0 m/s

HARPS vs. HIRES — Observations of the Same Star

RMS to 2-planet fit:		
HIRES = 2.2 m/s		
HARPS = 1.0 m/s		

GI 785 (HD 192310)

nearby, bright star K0V V = 5.7 mag

<u>Good test of noise sources:</u> not photon-limited test of systematic errors + jitter

<u>Planets discovered:</u> Planet b - Howard et al. (2011) Planet c - Pepe et al. (2011)

<u>RMS to 2-planet fit:</u> HIRES = 2.2 m/s HARPS = 1.0 m/s