

Coronagraph Design for the WFIRST CGI,

> A J Eldorado Riggs Optical Engineer Jet Propulsion Laboratory

Garreth Ruane (Caltech), Neil Zimmerman (GSFC), Dwight Moody (JPL), John Trauger (JPL), Bijan Nemati (UAH), John Krist (JPL)

> ExSoCal 2017 Meeting September 19, 2017

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Jet Propulsion Laboratory Current and Future Observatories California Institute of Technology Current and Future Observatories

Disk Science

HST STIS

WFIRST CGI

VLT SPHERE

- 1.9" FOV in V band
- 10% spectral bandwidth
- ~10⁻⁹ raw contrast

Coronagraph Design

- Maximize the science yield.
- Minimize risk.

Design Parameters

Sensitivities to:

Goals:

- Pointing jitter
- Wavefront jitter (coma, astig, focus)
- Primary mirror polarization
- Mask misalignment

Performance Metrics

- Contrast
- Throughput
- Spectral Bandwidth
- Field of View (IWA, OWA, angle)

Mask Properties

- Mask shapes
- Mask materials

Types of WFIRST CGI Mode

• 3 modes to achieve science goals:

(Notional dark holes)

- 1. <u>Hybrid Lyot Coronagraph (HLC): exoplanet & inner disk imaging</u>
 - 10% BW, 360° FOV, 3-10 λ_0 /D
 - ~4% core throughput

- 2. <u>Shaped Pupil Coronagraph (SPC)</u> for IFS: *exoplanet spectroscopy*
 - 18% BW, 2x65° FOV, 2.8-8.8 λ_0 /D, lower sensitivities
 - ~4% core throughput

- 3. Shaped Pupil Coronagraph (SPC): outer disk imaging
 - 10% BW, 360° FOV, 5.5-20 λ₀/D
 - 5.5% core throughput

- Trauger et al. JATIS 2016
- Riggs SPIE 2014
- Zimmerman, Riggs, et al. JATIS 2016

Coronagraph ?

Chronograph

The WFIRST Coronagraphs

Benefits of Each Coronagraph (complementary):

- HLC: Full FOV, fewer masks, easier alignment
- <u>SPC</u>: Broader bandwidth, better aber. sensitivities (esp. PM pol.), lower risk with DMs

Shaped Pupil Lyot Coronagraph

Jet Propulsion Laboratory

California Institute of Technology

Jet Propulsion Laboratory California Institute of Technology Ongoing Work: Hybridized Designs

Step 1: Perform grid search to find best 1-D radial solution.

Step 2: Use DMs to suppress diffraction from struts.

DMs mitigate the struts' diffraction more efficiently than the shaped pupil mask
 Better achievable throughput, IWA, and/or contrast

[For related work, refer to Mazoyer et al. 2017]

- WFIRST CGI will revolutionize direct imaging
 - First cool exoplanet images and spectra
 - First visible, scattered-light images of exozodiacal dust
 - First high-contrast coronagraph in space with active optics
- Design work is focused on
 - New numerical design methods
 - Increasing science yield
 - Improving performance and robustness

Backup Slides

- The future of coronagraph design is **numerical optimization**.
 - Because of sensitivities and obstructed pupils.
- Hybrid Lyot Coronagraphs (HLCs) are
 - Manufacturable
 - High performance
 - Tunable

Need a fast code for HLC design surveys...

Exoplanet Detection

- Most planets discovered indirectly
- Direct Imaging: for spectra & more orbital parameters

SPC-Disk Science Design

2017 Design A

Specs:

- 6.5 x 10⁻¹⁰ contrast (5x better)
- r=0.33-1.0" FOV (in V band)
- 10% Broadband
- Core throughput = 5.5%

Jet Propulsion Laboratory California Institute of Technology

Planned Design Pipeline

The polarization from the primary mirror is a MAJOR design constraint.

Cycle 6 Polarization: WFE_{y} - WFE_{x}

Jet Propulsion Laboratory

California Institute of Technology

This figure was already cleared in John Krist's presentation "Digging A Dark Hole: Models" in April 2016.

- <u>Differential polarization is mostly astigmatism</u>
 - Negligible near 600nm \rightarrow HLC
 - Huge WFE far from 600nm \rightarrow SPC, or HLC+polarizer
- Huge influence on our operational modes

Jet Propulsion Laboratory California Institute of Technology

HLC Sensitivities

This figure was already cleared in Feng Zhao's presentation "WFIRST Coronagraph Polarization Update – 11th Stanford Meeting" in March 2017.

- Outside V-band, HLC better with analyzer.
- Analyzer helps, but pol. cross-term still degrades contrast

 To overcome pupil obscurations and aberration sensitivities and to achieve science goals, need 3 types of operating modes:

- 1. <u>Hybrid Lyot Coronagraph (HLC)</u>: *exoplanet & disk imaging*
 - Full 360° FOV
 - Small IWA
 - Fewest masks (= lower complexity & cost)

- 2. <u>Shaped Pupil Coronagraph (SPC)</u> for IFS: *exoplanet spectroscopy*
 - 18% BW (for spectra)
 - Small IWA
 - Lower aberration sensitivities

3. <u>Shaped Pupil Coronagraph (SPC)</u>: disk imaging

- Full 360° FOV
- Largest OWA

- Trauger et al. JATIS 2016
- Riggs SPIE 2014
- Zimmerman, Riggs, et al. JATIS 2016 19

CGI Filter Wheel Populations

WEIRST

CGI Science Bands 1 and 2

• Bands 1 & 2 shifted to longer wavelength because polarization WFE is too strong at B-band.

CGI Science Bands

NOTE: No polarizers or field stops in IFS channel.

CGI Bands	λ _{center} (nm)	BW	Science Purpose	Imager or IFS	Coronagraph Type	Can Use Polarizer (for Science)	<i>Must</i> Use Polarizer (for Aberrations)
1	508	10%	continuum, Rayleigh	Imager	HLC	Х	X (HLC)
2	575	10%	continuum, Rayleigh	Imager	HLC	X	
3	660	18%	CH4 spectrum	IFS	SPC		
4	770	18%	CH4 spectrum	IFS	SPC		
5	890	18%	CH4 spectrum	IFS	SPC		
6	661	10%	CH4, continuum	Imager	SPC	X	
7	883	5%	CH4, absorption	Imager	SPC	X	
8	721	5%	CH4 quantification	Imager	SPC (& HLC?)	X	X (HLC)
9	950	6%	water detection	Imager	SPC	X	